架构学习:7种负载均衡算法策略

简介: 四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。

负载均衡是什么就不具体介绍了,四层负载均衡的工作模式包括:数据链路层负载均衡、网络层负载均衡、应用层负载均衡

1.数据链路层负载均衡

数据链路层传输的是以太网帧,负载均衡器修改帧的MAC目标地址,转发到对应服务器的网卡上。流程如下:

负载均衡1.png

2.网络层负载均衡

一个 IP 协议数据包由 Headers 和 Payload 两部分组成,在 IP 分组数据包的 Headers 带有源和目标的 IP 地址即可。源和目标 IP 地址代表了“数据是从分组交换网络中的哪台机器发送到哪台机器的”,所以可以通过改变这里面的 IP 地址,来实现数据包的转发,流程如下:

负载均衡2.png

3.应用层负载均衡策略

3.1轮循均衡(Round Robin)

每一次来自网络的请求,会轮流分配给内部中的服务器,从 1 到 N 然后重新开始。

这种均衡算法适用于服务器组中的所有服务器都有相同的软硬件配置,并且平均服务请求相对均衡的情况。

3.2权重轮循均衡 Weighted Round Robin

根据服务器的不同处理能力,给每个服务器分配不同的权值,使其能够接受相应权值数的服务请求。

比如,服务器 A 的权值被设计成 1,B 的权值是 3,C 的权值是 6,则服务器 A、B、C 将分别接收到 10%、30%、60%的服务请求。这种均衡算法能确保高性能的服务器得到更多的使用率,避免低性能的服务器负载过重。

3.3随机均衡 Random

即把来自客户端的请求随机分配给内部中的多个服务器。这种均衡算法在数据足够大的场景下,能达到相对均衡的分布。

3.4权重随机均衡 Weighted Random

这种均衡算法类似于权重轮循算法,不过在处理请求分担的时候,它是个随机选择的过程

3.5一致性哈希均衡Consistency Hash

根据请求中的某些数据(可以是 MAC、IP 地址,也可以是更上层协议中的某些参数信息)作为特征值,来计算需要落在哪些节点上,算法一般会保证同一个特征值,每次都一定落在相同的服务器上。

这里一致性的意思就是,保证当服务集群的某个真实服务器出现故障的时候,只影响该服务器的哈希,而不会导致整个服务集群的哈希键值重新分布。

3.6 响应速度均衡 Response Time

即负载均衡设备对内部各服务器发出一个探测请求(如 Ping),然后根据内部中各服务器对探测请求的最快响应时间,来决定哪一台服务器来响应客户端的服务请求。

这种均衡算法能比较好地反映服务器的当前运行状态,但要注意,这里的最快响应时间,仅仅指的是负载均衡设备与服务器间的最快响应时间,而不是客户端与服务器间的最快响应时间。

3.7 最少连接数均衡 Least Connection

客户端的每一次请求服务,在服务器停留的时间可能会有比较大的差异。那么随着工作时间加长,如果采用简单的轮循或者随机均衡算法,每一台服务器上的连接进程可能会产生极大的不平衡,并没有达到真正的负载均衡。

所以,最少连接数均衡算法就会对内部中需要负载的每一台服务器,都有一个数据记录,也就是记录当前该服务器正在处理的连接数量,当有新的服务连接请求时,就把当前请求分配给连接数最少的服务器,使均衡更加符合实际情况,负载也能更加均衡。这种均衡算法适合长时间处理的请求服务,比如 FTP 传输。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
5月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
278 26
|
6月前
|
机器学习/深度学习 算法 数据挖掘
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
214 0
|
5月前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
1391 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
5月前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
289 1
|
5月前
|
存储 并行计算 算法
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
264 4
|
6月前
|
机器学习/深度学习 算法 数据可视化
近端策略优化算法PPO的核心概念和PyTorch实现详解
本文深入解析了近端策略优化(PPO)算法的核心原理,并基于PyTorch框架实现了完整的强化学习训练流程。通过Lunar Lander环境展示了算法的全过程,涵盖环境交互、优势函数计算、策略更新等关键模块。内容理论与实践结合,适合希望掌握PPO算法及其实现的读者。
1083 2
近端策略优化算法PPO的核心概念和PyTorch实现详解
|
5月前
|
运维 算法 安全
基于变异粒子群算法的主动配电网故障恢复策略(Matlab代码实现)
基于变异粒子群算法的主动配电网故障恢复策略(Matlab代码实现)
|
7月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
211 4
|
7月前
|
缓存 监控 API
电商API的微服务架构优化策略
随着电商快速发展,API成为连接用户、商家与系统的核心。本文探讨微服务架构下电商API的优化策略,分析高并发、低延迟与数据一致性等挑战,并提供服务拆分、缓存异步、监控容器化等实践方案,助力构建高性能、高可用的电商系统,提升用户体验与业务效率。
203 0
|
9月前
|
负载均衡 前端开发 应用服务中间件
Tomcat的负载均衡和动静分离(与nginx联动)
总的来说,负载均衡和动静分离是提高Web应用性能的两个重要手段。通过合理的配置和使用,我们可以让Web应用更好地服务于用户。
301 21

热门文章

最新文章