最佳实践—如何选择应用端链接池

简介: 背景 当应用程序连接PolarDB-X实例执行操作时,从PolarDB-X实例的角度看,会有如下两种类型的连接: 前端连接:由应用程序建立的,到PolarDB-X计算节点(CN)中逻辑库的连接。 后端连接:由PolarDB-X计算节点建立的,到后端数据节点(DN)中物理库的连接。

背景

当应用程序连接PolarDB-X实例执行操作时,从PolarDB-X实例的角度看,会有如下两种类型的连接:

  • 前端连接:由应用程序建立的,到PolarDB-X计算节点(CN)中逻辑库的连接。
  • 后端连接:由PolarDB-X计算节点建立的,到后端数据节点(DN)中物理库的连接。4..png其中后端连接由CN管理,通过私有协议实现TCP连接与后端连接解绑,对用户透明。前端连接由用户创建和管理,本文主要讨论前端连接管理的最佳实践。


说明 为了简化描述,下文中的 “连接” 均代指 “前端连接”。

QPS/RT与连接数的关系

每秒查询请求数 (Query Per Second,QPS) 和响应时间 (Response Time,RT) 是衡量应用对数据库性能需求的基本指标,QPS代表应用并发访问数据库的需求,RT代表单条语句的处理性能。RT的高低与执行的SQL是否复杂和扫描的数据量紧密相关,OLTP系统中查询RT较低,通常以毫秒为单位。

PolarDB-X兼容MySQL协议,请求在单个连接上串行执行,不同连接上的请求可以并行执行,由此得到以下公式:

  • 单个连接的QPS上限 = 1000/RT
  • 应用访问单个CN的QPS上限 = 单个连接的QPS上限×连接数

按照平均RT为5ms计算,单个连接的QPS上限为200,假设应用预估需要的QPS为5000,则至少需要建立250个连接。

连接数限制

PolarDB-X中前端连接仅与网络连接绑定,连接的数量理论上仅受限于CN可用的内存大小和网络连接数。但在实际的场景中,应用创建连接是为了执行查询,连接数需要与执行线程的数量相匹配才能达到最佳性能。5..png

其中后端连接由CN管理,通过私有协议实现TCP连接与后端连接解绑,对用户透明。前端连接由用户创建和管理,本文主要讨论前端连接管理的最佳实践。


说明 为了简化描述,下文中的 “连接” 均代指 “前端连接”。

QPS/RT与连接数的关系

每秒查询请求数 (Query Per Second,QPS) 和响应时间 (Response Time,RT) 是衡量应用对数据库性能需求的基本指标,QPS代表应用并发访问数据库的需求,RT代表单条语句的处理性能。RT的高低与执行的SQL是否复杂和扫描的数据量紧密相关,OLTP系统中查询RT较低,通常以毫秒为单位。

PolarDB-X兼容MySQL协议,请求在单个连接上串行执行,不同连接上的请求可以并行执行,由此得到以下公式:

  • 单个连接的QPS上限 = 1000/RT
  • 应用访问单个CN的QPS上限 = 单个连接的QPS上限×连接数

按照平均RT为5ms计算,单个连接的QPS上限为200,假设应用预估需要的QPS为5000,则至少需要建立250个连接。

连接数限制

PolarDB-X中前端连接仅与网络连接绑定,连接的数量理论上仅受限于CN可用的内存大小和网络连接数。但在实际的场景中,应用创建连接是为了执行查询,连接数需要与执行线程的数量相匹配才能达到最佳性能。6..png

  • 连接池模式(TCP 长连接)效率更高,但部分场景下对分布式负载均衡不友好,可能导致CN负载不均匀
    1. 突发创建连接,导致分布不均如果应用存在突发创建大量连接的情况,负载均衡设备无法及时刷新统计信息,可能出现部分CN上连接较多,结合连接池化,最终导致部分CN压力高于其他CN,影响系统总体性能。
    2. 负载均衡探活异常,导致分布不均负载均衡通过主动探活来判断CN节点是否正常,当探活出现偶发异常时,可能导致部分CN上连接较少,结合连接池化,最终导致部分CN压力低于其他CN,影响系统总提性能。
  • Druid连接池增加了phyTimeoutMillis/phyMaxUseCount参数,定期(例如执行10000次或者10分钟)刷新连接池中的连接,可以在解决上述问题的同时保持性能基本不变,建议默认添加这两个配置。
  • 应用线程数与连接池应用程序访问数据库的一种常见模式,是在应用程序中创建多个线程,每个线程获取一个到数据库的连接并执行查询。为了减少创建/释放线程的开销,通常会使用“线程池”来管理线程,线程池的一个重要参数是“最大线程数”,需要根据实际情况调整。
    理想情况下,查询的RT波动不大,可以应用上文介绍的公式,根据RT计算出合理的连接池大小,并根按照“每个线程一个数据库连接”的思路确定最大线程数。实际场景中,查询RT受到热点、锁、数据倾斜等多种因素的影响,可能出现突发RT增长,甚至部分连接失去响应。如果完全按照理想情况连接池/线程池,可能由于部分慢查询耗尽连接池/线程池,导致应用失去响应,影响关联系统。因此,建议按照“理想情况”的1.5到2倍来设置最大连接数/线程数。
相关文章
|
JSON 前端开发 JavaScript
富文本编辑器Ueditor实战(三)-springboot集成
通过本文,您可了解springboot如何集成ueditor,如何自定义扩展后端的文件上传功能。
1056 0
富文本编辑器Ueditor实战(三)-springboot集成
|
机器学习/深度学习 存储 人工智能
量子计算与人工智能:探索两大前沿技术的结合
当谈到两个最令人兴奋的领域时,量子计算和人工智能都毫无疑问地处于前沿。这两个领域的结合潜力巨大,为解决一些传统计算难题和推动智能系统的发展带来了新的可能性。本文将探讨量子计算与人工智能的结合,并提供一个简单的代码案例来演示这种融合的潜力。
754 0
|
云计算
阿里云短信群发、验证码、短信提醒费用价格表
阿里云短信群发、验证码、短信提醒费用价格表,阿里云短信服务价格表,阿里云短信0.032元一条,阿里云短信价格?阿里云短信怎么收费?阿里云短信多少钱一条,阿里云短信价格0.032元一条
857 0
|
Web App开发 机器人
小白一学就会小红书全自动写文发文机器人-爆文仿写笔记(二) -附提示词
小白一学就会小红书全自动写文发文机器人-爆文仿写笔记(二) -附提示词
695 1
|
人工智能 监控 供应链
信息系统项目管理师重点内容汇总(第十三天)
【2月更文挑战第2天】乘风破浪会有时,直挂云帆济沧海
1172 5
信息系统项目管理师重点内容汇总(第十三天)
|
人工智能 自然语言处理 搜索推荐
AI如何优化广告效果?
【5月更文挑战第15天】AI如何优化广告效果?
486 1
|
机器学习/深度学习 算法 数据挖掘
【机器学习】深度学习20个笔试题
本文提供了一份包含20个问题的深度学习笔试试题集。
768 0
|
编解码 人工智能 物联网
CogVLM2: 智谱开源新一代多模态大模型!
智谱·AI推出了新一代 CogVLM2 系列模型,并开源了使用 Meta-Llama-3-8B-Instruct 构建的两个模型。 与上一代CogVLM开源模型相比,CogVLM2系列开源模型有了很多改进...
|
机器学习/深度学习 人工智能 供应链
人工智能在社会中的影响与未来展望
人工智能(AI)作为一项重要的技术革新,正在深刻地改变着我们的生活方式、工作方式以及社会结构。本文旨在探讨人工智能在社会中的影响,并展望其未来发展趋势。首先,我们回顾了人工智能的发展历程,从其起源到当前的发展阶段,概述了人工智能技术的基本原理和应用领域。其次,我们分析了人工智能对各个行业的影响,包括但不限于医疗保健、金融、制造业、交通运输和教育等领域。人工智能的广泛应用使得这些行业更加智能化、高效化,但也带来了一些挑战,如就业岗位的变化、隐私安全问题等。接着,我们讨论了人工智能在社会中的伦理和道德问题,包括人工智能算法的公平性、透明性和责任问题。最后,我们展望了人工智能的未来发展,包括强化学习
881 0
|
弹性计算
阿里云服务器带宽计费模式按固定和按流量怎么选?选择全解析
阿里云服务器公网带宽计费模式按固定带宽和按使用流量哪个划算?按固定带宽计费1M带宽一个月23元,按使用流量计费1GB流量0.8元,如果云服务器带宽使用率低于10%,那么首选按使用流量计费,如果带宽实际利用率较高的话,按固定带宽计费更划算一些。云服务器吧来详细说下阿里云服务器带宽不同计费模式下收费价格、费用计算方法及如何选择更合适说明:
2053 1
阿里云服务器带宽计费模式按固定和按流量怎么选?选择全解析