智能语音交互

首页 标签 智能语音交互
# 智能语音交互 #
关注
2336内容
【人工智能】传统语音识别算法概述,应用场景,项目实践及案例分析,附带代码示例
传统语音识别算法是将语音信号转化为文本形式的技术,它主要基于模式识别理论和数学统计学方法。以下是传统语音识别算法的基本概述
人工智能,应该如何测试?(五)ASR 效果测试介绍
ASR是自动语音识别技术,将语音转化为文本,涉及多学科知识。数据收集是关键,包括特定人/非特定人、词汇量大小、发音方式、方言和情感等多种类别,高质量数据成本高。ASR流程包括数据收集、标注、输入算法得到文本输出并评估。常用评估指标有字错率(WER)、字正确率及插入/删除/替换率。数据标注需严格遵循规范,工作量大,而Levenshtein库可用于自动化效果评测。在AI领域,大部分时间投入在数据处理上。
语音识别接口 - ASR性能指标WER/SER
做人工智能测试,准确一点,做语音聊天机器人、智能音箱等测试,一定会接触到语音误别即ASR (Automatic Speech Recognition)。本篇主要讲ASR的几个最重要的指标字错率、句错率。
SpeechGPT 2.0:复旦大学开源端到端 AI 实时语音交互模型,实现 200ms 以内延迟的实时交互
SpeechGPT 2.0 是复旦大学 OpenMOSS 团队推出的端到端实时语音交互模型,具备拟人口语化表达、低延迟响应和多情感控制等功能。
MRCP(Media Resource Control Protocol)
MRCP(Media Resource Control Protocol)是一种音视频资源控制协议,用于控制语音识别、语音合成和语音交互等场景中的音视频资源。阿里云语音交互服务(ASR、TTS、Chatbot)支持MRCP协议,您可以使用MRCP协议来控制音视频资源,并实现语音交互的功能。
免费试用