机器翻译

首页 标签 机器翻译
# 机器翻译 #
关注
2026内容
Transformer 学习笔记 | Seq2Seq,Encoder-Decoder,分词器tokenizer,attention,词嵌入
本文记录了学习Transformer过程中的笔记,介绍了Seq2Seq模型及其编码器-解码器结构。Seq2Seq模型通过将输入序列转化为上下文向量,再由解码器生成输出序列,适用于机器翻译、对话系统等任务。文章详细探讨了Seq2Seq的优势与局限,如信息压缩导致的细节丢失和短期记忆限制,并引入注意力机制来解决长序列处理问题。此外,还介绍了分词器(tokenizer)的工作原理及不同类型分词器的特点,以及词嵌入和Transformer架构的基础知识。文中包含大量图表和实例,帮助理解复杂的概念。参考资料来自多个权威来源,确保内容的准确性和全面性。
火了这么久的 AI,现在怎么样了?
近年来 AI 发展迅猛,从最初的萌芽到今天非常成功的应用,AI 有很多优秀的实践,同时也遇到了非常多的挑战,需要不断地通过技术革新来解决这些困局。阿里巴巴达摩院高级研究员金榕将通过本文介绍当前 AI 已取得的应用实践,解析 AI 的创新以及可探索的未来。
DeepSeek逆天,核心是 知识蒸馏(Knowledge Distillation, KD),一项 AI 领域的关键技术
尼恩架构团队推出《LLM大模型学习圣经》系列,涵盖从Python开发环境搭建到精通Transformer、LangChain、RAG架构等核心技术,帮助读者掌握大模型应用开发。该系列由资深架构师尼恩指导,曾助力多位学员获得一线互联网企业的高薪offer,如网易的年薪80W大模型架构师职位。配套视频将于2025年5月前发布,助你成为多栖超级架构师。此外,尼恩还提供了NIO、Docker、K8S等多个技术领域的学习圣经PDF,欢迎领取完整版资源。
【深度学习】探讨最新的深度学习算法、模型创新以及在图像识别、自然语言处理等领域的应用进展
深度学习作为人工智能领域的重要分支,近年来在算法、模型以及应用领域都取得了显著的进展。以下将探讨最新的深度学习算法与模型创新,以及它们在图像识别、自然语言处理(NLP)等领域的应用进展。
免费试用