RAG 2.0架构详解:构建端到端检索增强生成系统
RAG(检索增强生成)旨在通过提供额外上下文帮助大型语言模型(LLM)生成更精准的回答。现有的RAG系统由独立组件构成,效率不高。RAG 2.0提出了一种预训练、微调和对齐所有组件的集成方法,通过双重反向传播最大化性能。文章探讨了不同的检索策略,如TF-IDF、BM25和密集检索,并介绍了如SPLADE、DRAGON等先进算法。目前的挑战包括创建可训练的检索器和优化检索-生成流程。研究表明,端到端训练的RAG可能提供最佳性能,但资源需求高。未来研究需关注检索器的上下文化和与LLM的协同优化。
公共医疗数据库汇总:无需实验,高效论文撰写利器
在医学研究领域,获取高质量的数据和文献资源是进行科学论文撰写的关键。随着信息技术的发展,以及公共医疗数据库的不断壮大和完善,研究人员可以轻松地获取大量的医学数据和文献信息,从而提高论文撰写的效率和质量。本文将为您介绍一系列全面的公共医疗数据库,这些数据库不仅为您提供了丰富的医学资源,还无需进行实验,成为高效论文撰写的利器。
一站式元数据治理平台——Datahub入门宝典(一)
随着数字化转型的工作推进,数据治理的工作已经被越来越多的公司提上了日程。作为新一代的元数据管理平台,Datahub在近一年的时间里发展迅猛,大有取代老牌元数据管理工具Atlas之势。国内Datahub的资料非常少,大部分公司想使用Datahub作为自己的元数据管理平台,但可参考的资料太少。
所以整理了这份文档供大家学习使用。本文档基于Datahub最新的0.8.20版本,整理自部分官网内容,各种博客及实践过程。
生成式AI入门必读:基本概念、数据挑战与解决方案
许多企业正在选择MongoDB Atlas。其原生向量搜索功能,加上统一的 API 和灵活的文档模型,对于寻求通过 RAG 方法提取专有数据来增强 LLM 的企业来说,是一个有吸引力的选择。