边缘计算

首页 标签 边缘计算
# 边缘计算 #
关注
2892内容
边缘计算与云计算的协同工作:技术解析与应用前景
【8月更文挑战第4天】边缘计算与云计算的协同工作是未来信息技术发展的重要趋势。通过合理地分配任务和资源,两者可以相互补充、发挥各自的优势,实现更高效的数据处理和分析。这种协同模式不仅提高了系统的性能和可靠性,还满足了复杂多变的应用需求,为人工智能、物联网等技术的发展提供了强有力的支持。
智能化运维:AI在IT运维中的应用探索###
随着信息技术的飞速发展,传统的IT运维模式正面临着前所未有的挑战。本文旨在探讨人工智能(AI)技术如何赋能IT运维,通过智能化手段提升运维效率、降低故障率,并为企业带来更加稳定高效的服务体验。我们将从AI运维的概念入手,深入分析其在故障预测、异常检测、自动化处理等方面的应用实践,以及面临的挑战与未来发展趋势。 ###
2024年提升开发效率的十大技巧
2024年,软件开发领域持续快速发展,新技术和工具层出不穷。本文总结了十大提升开发效率的技巧,包括精通Git Hooks自动化流程、利用Docker容器化技术、拥抱无代码/低代码平台、集成AI/ML、关注IoT、重视网络安全、采用云原生开发和微服务架构、探索边缘计算、利用AR和即时应用技术,以及参与开源软件项目。这些技巧旨在帮助开发者适应技术变革,提高工作效率。
|
9月前
| |
Google 发布其开源模型系列最新模型 Gemma 3
Google 发布了其开源模型系列的最新成员 Gemma 3,这是一款轻量级、高性能的 AI 模型,支持多语言和复杂任务。它具备 140+ 语言支持、128K-token 上下文窗口、增强的多模态分析能力以及函数调用功能,适用于聊天 AI、代码生成等多种场景。Gemma 3 在性能上超越 Llama 3-8B 和 Mistral 7B,且仅需单 GPU 即可运行,大幅降低计算成本。提供 1B 至 27B 不同参数规模版本,满足多样化需求,并优化了量化模型以适应边缘计算和移动设备。其多模态设计整合了 SigLIP 图像编码器,扩展上下文窗口至 128k token,显著提升了视觉和文本理解能力。
基于YOLOv8的鸟类智能识别系统设计与实现
鸟类是生态系统中非常重要的物种,对生物多样性保护和生态研究具有重要意义。 传统的鸟类识别需要人工观察与分类,不仅效率低,而且容易受限于专家经验。 随着深度学习的发展,基于 YOLOv8 的鸟类检测系统 能够在自然场景中高效、准确地完成多物种识别,为生态监测、科研和教育提供有力工具。
云边一体--如何基于标准k8s打造边缘计算云原生基础设施
云原生的理念如今正如火如荼。它不仅仅是一种技术,更是随着云生态的发展而被逐渐提炼出的一系列技术、最佳实践与方法论的集合;它带来了资源利用率提升、分布式系统的弹性扩展与可靠性等能力,能够让IT系统最大程度的享受云计算红利,业界全面拥抱云原生就是最好的佐证。 伴随5G、IoT的发展,边缘计算正在成为云计算的新边界,而规模和复杂度的日益提升对边缘计算的效率,可靠性,资源利用率等一系列能力又有了新的诉求。试想,如果能将云能力从中心往边缘触达,上述问题是不是将迎刃而解?那么在云原生时代构建云到边的触达通路,保持云边一致性体验,我们的抓手又在哪里呢?本次分享将一一为你揭晓;
阿里云熊鹰:基于融合、协同系统的边缘云原生架构演进和实践
云原生和边缘计算是近两年都非常火的技术话题了,在第十届云计算标准和应用大会上,阿里云高级技术专家熊鹰分享了《基于融合、协同系统的边缘云原生架构演进和实践》,希望通过介绍现在阿里云在边缘计算和边缘云原生这些技术领域的系统架构演进,让大家了解到业务在云原生和边缘计算结合场景下落地的一些思考。
“论模型驱动架构设计方法及其应用”写作框架,软考高级,系统架构设计师
模型驱动架构设计是一种用于应用系统开发的软件设计方法,以模型构造、模型转换和精化为核心,提供了一套软件设计的指导规范。在模型驱动架构环境下,通过创建出机器可读和高度抽象的模型实现对不同问题域的描述,这些模型独立于实现技术,以标准化的方式储存,利用模型转换策略来驱动包括分析、设计和实现等在内的整个软件开发过程。
免费试用