智慧交通

首页 标签 智慧交通
# 智慧交通 #
关注
418内容
智慧交通day03-车道线检测实现02-2:张氏标定法+双目标定
该方法介于传统标定法和自标定法之间,既克服了传统标定法需要的高精度三维标定物的缺点,又解决了自标定法鲁棒性差的难题。标定过程不需要特殊的标定物,只需使用一张打印出来的棋盘格,并从不同方向拍摄几组图片即可,不仅实用灵活方便,而且精度很高,鲁棒性好。因此很快被全世界广泛采用,极大的促进了三维计算机视觉从实验室走向真实世界的进程。
智慧交通day03-车道线检测实现02-1:相机校正
我们所处的世界是三维的,而照片是二维的,我们可以把相机认为是一个函数,输入量是一个场景,输出量是一幅灰度图。这个从三维到二维的过程的函数是不可逆的。
智慧交通day03-车道线检测实现01:车道线检测概述
汽车的日益普及在给人们带来极大便利的同时,也导致了拥堵的交通路况,以及更为频发的交通事故。而自动驾驶技术的出现可以有效的缓解了此类问题,减少交通事故,提升出行效率。
智慧交通day02-车流量检测实现14:代码汇总+问题修正
智慧交通day02-车流量检测实现14:代码汇总+问题修正
智慧交通day02-车流量检测实现13:基于虚拟线圈法的车辆统计+视频中的车流量统计原理解析
虚拟线圈车辆计数法的原理是在采集到的交通流视频中,在需要进行车辆计数的道路或路段上设置一条或一条以上的检测线对通过车辆进行检测,从而完成计数工作。检测线的设置原则一般是在检测车道上设置一条垂直于车道线
智慧交通day02-车流量检测实现12:基于yoloV3的目标检测
在这里我们进行的目标检测是基于OPenCV的利用yoloV3进行目标检测,不涉及yoloV3的模型结构、理论及训练过程,只是利用训练好的模型进行目标检测
智慧交通day02-车流量检测实现11:yoloV3模型
YOLOv3是YOLO (You Only Look Once)系列目标检测算法中的第三版,相比之前的算法,尤其是针对小目标,精度有显著提升。
智慧交通day02-车流量检测实现10:多目标追踪实现
该方法实现了SORT算法,输入是当前帧中所有物体的检测框的集合,包括目标的score,输出是当前帧标的跟踪框集合,包括目标的跟踪的id要求是即使检测框为空,也必须对每一帧调用此方法,返回一个类似的输出数组,最后一列是目标对像的id。
智慧交通day02-车流量检测实现08:目标跟踪中的数据关联(将检测框bbox与卡尔曼滤波器的跟踪框进行关联匹配)
智慧交通day02-车流量检测实现08:目标跟踪中的数据关联(将检测框bbox与卡尔曼滤波器的跟踪框进行关联匹配)
智慧交通day02-车流量检测实现07:匈牙利算法
有一种很特别的图,就做二分图,那什么是二分图呢?就是能分成两组,U,V。其中,U上的点不能相互连通,只能连去V中的点,同理,V中的点不能相互连通,只能连去U中的点。这样,就叫做二分图。
免费试用