构建AI智能体:十七、大模型的幻觉难题:RAG 解决AI才华横溢却胡言乱语的弊病
RAG(检索增强生成)是一种结合信息检索与大型语言模型的技术,旨在解决LLM的幻觉问题。其核心流程包括:离线处理阶段(知识库构建)和在线处理阶段(用户查询应答)。通过将外部知识源转换为向量存入数据库,当用户提问时,系统会检索相关内容并增强提示,再由LLM生成准确答案。RAG技术显著提升了AI在专业领域的可靠性,适用于智能客服、企业知识管理、内容创作等场景。尽管面临检索精度、多模态处理等挑战,RAG仍是AI实用化的重要突破方向。
焊接情况检测数据集(千张图片已划分)| 面向工业质检的目标检测训练集
总结来看,本次分享的焊接情况检测数据集为工业智能化提供了坚实的基础。数据集涵盖了“良好焊缝”、“不良焊缝”和“缺陷”三大类别,采用了标准的 YOLO 标注格式,保证了在目标检测任务中能够高效、准确地训练模型。通过合理划分训练集、验证集和测试集,开发者可以充分利用数据进行模型优化与验证,从而在实际工业生产环境中实现对焊接表面缺陷的自动检测与监控。
六、Scala特质
特质就像一盒随取随用的拼装零件:类能一次混入好几个,拿来补充行为很方便;还能在创建对象时临时加上功能。它甚至能继承类,对混入者提出限制。多个特质一起用时有线性化执行顺序,不乱套。再配合设计模式,像适配器、模板方法、职责链这些套路,都能用 trait 玩得很自然。