AI+求解器双决策引擎MindOpt Studio助力参赛队伍赢得电力调度大赛
于12月27日结束的第五届电力调度AI大赛以“基于人工智能的电力现货市场快速出清”为主题。达摩院决策智能实验室MindOpt Studio团队第二次协办该赛事,向参赛队伍提供比赛封闭环境的算法开发环境与测试平台。在与友商比拼下,阿里云产研团队与达摩院MindOpt团队的紧密协作,赋予了比赛以多项新技能Buff,使用MindOpt Studio平台的参赛队伍在评测中占据了前10名中的8席。决赛冠军清华大学团队对阿里云点赞。
中文语音识别转文字的王者,阿里达摩院FunAsr足可与Whisper相颉顽
君不言语音识别技术则已,言则必称Whisper,没错,OpenAi开源的Whisper确实是世界主流语音识别技术的魁首,但在中文领域,有一个足以和Whisper相颉顽的项目,那就是阿里达摩院自研的FunAsr。
FunAsr主要依托达摩院发布的Paraformer非自回归端到端语音识别模型,它具有高精度、高效率、便捷部署的优点,支持快速构建语音识别服务,最重要的是,FunASR支持标点符号识别、低语音识别、音频-视觉语音识别等功能,也就是说,它不仅可以实现语音转写,还能在转写后进行标注,一石二鸟。
MindOpt工具是如何做到配套使用的?请看此篇
MindOpt是阿里巴巴达摩院决策职能实验室研发的专注于优化领域,提供智能优化解决方案的品牌。主要的目标是帮助客户通过先进的优化算法和技术,实现业务流程的最佳化,提升效率,降低成本,并最大化业务价值。
阿里巴巴达摩院“绿色能源AI”解决方案
阿里巴巴达摩院决策智能实验室致力于研究决策智能系统需要的国际前沿技术,提升业务运营效率和收益、降低成本。在电力能源行业构建出“绿色能源AI”方案,与国家电网、南方电网等企业合作落地多个项目。代表作软件是行业领先的MindOpt优化求解器、智能电力预测eForecaster、MindOpt Studio决策开发云平台。研究方向包含机器学习、数学建模、优化求解、 时序预测、因果分析、决策方案可解释性、决策推理大模型等。本篇是达摩院“绿色能源AI"方案的介绍幻灯片图,供大家了解方案的能力。
MindOpt APL:一款适合优化问题数学建模的编程语言
本文将以阿里达摩院研发的MindOpt建模语言(MindOpt Algebra Programming Language, MindOptAPL,简称为MAPL)来讲解。MAPL是一种高效且通用的代数建模语言,当前主要用于数学规划问题的建模,并支持调用多种求解器求解。
【EMNLP 2023】基于知识迁移的跨语言机器阅读理解算法
近日,阿里云人工智能平台PAI与华南理工大学朱金辉教授团队、达摩院自然语言处理团队合作在自然语言处理顶级会议EMNLP2023上发表基于机器翻译增加的跨语言机器阅读理解算法X-STA。通过利用一个注意力机制的教师来将源语言的答案转移到目标语言的答案输出空间,从而进行深度级别的辅助以增强跨语言传输能力。同时,提出了一种改进的交叉注意力块,称为梯度解缠知识共享技术。此外,通过多个层次学习语义对齐,并利用教师指导来校准模型输出,增强跨语言传输性能。实验结果显示,我们的方法在三个多语言MRC数据集上表现出色,优于现有的最先进方法。