基础大模型 vs 应用大模型
基础大模型(如GPT-3、BERT等)通过大量通用数据训练,具备强大的泛化能力。应用大模型则在此基础上进行微调,针对特定任务优化。两者均将知识编码在参数中,而非直接存储原始数据,实现“自然留存”。阿里云提供多种大模型和服务,欢迎体验。
基于地理位置的访问策略的GA加速最佳实践
全球加速GA是阿里云提供的全球网络加速服务,支持基于地理位置的访问策略。本文介绍如何通过多组GA实例组合,实现一个域名在全球多个区域的服务同步加速。具体步骤包括创建ECS实例、部署Nginx服务器、配置GA及全局流量管理器等。
对话阿里云吴结生:AI时代,云上高性能计算的创新发展
在阿里云智能集团副总裁,弹性计算产品线负责人、存储产品线负责人 吴结生看来,如今已经有很多行业应用了高性能计算,且高性能计算的负载正呈现出多样化发展的趋势,“当下,很多基础模型的预训练、自动驾驶、生命科学,以及工业制造、半导体芯片等行业和领域都应用了高性能计算。”吴结生指出。
如何编写有效的Prompt模板:提升大模型性能的关键
在大模型应用中,编写有效的Prompt至关重要。本文介绍了如何编写高质量的Prompt模板,包括明确任务定义、选择高质量示例、优化任务指示和调整示例顺序。详细探讨了百炼平台提供的三种主要Prompt模板(ICIO、CRISPE、RASCEF)及静态和动态样例库的创建与应用,帮助提升模型性能。