并行计算

首页 标签 并行计算
# 并行计算 #
关注
5020内容
|
6天前
|
【AI系统】Tensor Core 架构演进
自2017年Volta架构推出以来,英伟达的GPU架构不断进化,从Volta的张量核心(Tensor Core)革新,到Turing的整数格式支持,再到Ampere的稀疏矩阵计算优化,以及Hopper的FP8张量核心和Transformer引擎,直至2024年的Blackwell架构,实现了30倍的LLM推理性能提升。每一代架构都标志着深度学习计算的重大突破,为AI技术的发展提供了强大的硬件支持。
|
6天前
|
【AI系统】Tensor Core 基本原理
本文深入介绍了英伟达GPU中的Tensor Core,一种专为加速深度学习设计的硬件单元。文章从发展历程、卷积计算、混合精度训练及基本原理等方面,详细解析了Tensor Core的工作机制及其在深度学习中的应用,旨在帮助读者全面理解Tensor Core技术。通过具体代码示例,展示了如何在CUDA编程中利用Tensor Core实现高效的矩阵运算,从而加速模型训练和推理过程。
|
6天前
|
【AI系统】GPU 架构回顾(从2018年-2024年)
2018年发布的Turing图灵架构,采用12nm工艺,包含18.6亿个晶体管,大幅提升了PC游戏、专业图形应用及深度学习推理的效率与性能。Turing引入了RT Core和Tensor Core,分别用于实时光线追踪和加速深度学习计算,支持GDDR6内存,显著提升了数据传输速率和效率。此外,Turing架构还支持NVLink 2.0,增强了多GPU协同工作的能力,适用于复杂的图形渲染和深度学习任务。
|
6天前
|
【AI系统】GPU 架构回顾(从2010年-2017年)
自1999年英伟达发明GPU以来,其技术不断革新。本文概述了从2010年至2024年间,英伟达GPU的九代架构演变,包括费米、开普勒、麦克斯韦、帕斯卡、伏特、图灵、安培、赫柏和布莱克韦尔。这些架构不仅在游戏性能上取得显著提升,还在AI、HPC、自动驾驶等领域发挥了重要作用。CUDA平台的持续发展,以及Tensor Core、NVLink等技术的迭代,巩固了英伟达在计算领域的领导地位。
|
6天前
|
【AI系统】GPU 架构与 CUDA 关系
本文介绍了英伟达GPU硬件基础概念,重点解析了A100 GPU架构中的GPC、TPC、SM等组件及其功能。接着深入讲解了CUDA并行计算平台和编程模型,特别是CUDA线程层次结构。最后,文章探讨了如何根据CUDA核心数量、核心频率等因素计算GPU的算力峰值,这对于评估大模型训练的算力需求至关重要。
|
6天前
|
量子计算算法:超越经典计算机的边界
量子计算基于量子力学原理,利用量子位、量子叠加和量子纠缠等特性,实现并行计算和高效处理复杂问题。核心算法如Shor算法和Grover算法展示了量子计算在大数分解和搜索问题上的优势。尽管面临量子位稳定性和规模化等挑战,量子计算在化学模拟、优化问题和人工智能等领域展现出巨大潜力,预示着未来的广泛应用前景。
|
7天前
|
【AI系统】GPU 基础
GPU,即图形处理器,是计算机系统中处理图形和图像的核心组件,从早期的简单图形加速到如今的高性能计算和深度学习加速,GPU 经历了显著的技术革新。本文将介绍 GPU 的发展历程、与 CPU 的区别、在 AI 领域的关键作用及其在游戏、消费电子、自动驾驶等多个领域的广泛应用。
|
7天前
|
【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,解释了算力计算方法、数据加载与计算的平衡点,以及如何通过算力敏感度分析优化性能瓶颈。同时,文章还讨论了服务器、GPU和超级计算机等不同计算平台的性能发展趋势,强调了优化数据传输速率和加载策略的重要性。
|
7天前
|
【AI系统】AI轻量化与并行策略
本文探讨了AI计算模式对芯片设计的重要性,重点介绍了轻量化网络模型和大模型分布式并行两大主题。轻量化模型旨在减少参数量和计算量,适合资源受限的设备;大模型分布式并行则针对高性能计算需求,通过数据并行、模型并行等技术提高训练效率。文中详细解析了轻量化设计的方法及分布式并行的实现机制,为AI芯片设计提供了理论依据和技术指导。
免费试用