图解机器学习 | GBDT模型详解

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: GBDT是一种迭代的决策树算法,将决策树与集成思想进行了有效的结合。本文讲解GBDT算法的Boosting核心思想、训练过程、优缺点、与随机森林的对比、以及Python代码实现。

ShowMeAI研究中心

作者:韩信子@ShowMeAI
教程地址http://www.showmeai.tech/tutorials/34
本文地址http://www.showmeai.tech/article-detail/193
声明:版权所有,转载请联系平台与作者并注明出处


1.GBDT算法

GBDT(Gradient Boosting Decision Tree),全名叫梯度提升决策树,是一种迭代的决策树算法,又叫 MART(Multiple Additive Regression Tree),它通过构造一组弱的学习器(树),并把多颗决策树的结果累加起来作为最终的预测输出。该算法将决策树与集成思想进行了有效的结合。

(本篇GBDT集成模型部分内容涉及到机器学习基础知识、决策树、回归树算法,没有先序知识储备的宝宝可以查看ShowMeAI的文章 图解机器学习 | 机器学习基础知识决策树模型详解回归树模型详解)。

1)Boosting核心思想

Boosting方法训练基分类器时采用串行的方式,各个基分类器之间有依赖。它的基本思路是将基分类器层层叠加,每一层在训练的时候,对前一层基分类器分错的样本,给予更高的权重。测试时,根据各层分类器的结果的加权得到最终结果。

Bagging与Boosting的串行训练方式不同,Bagging方法在训练过程中,各基分类器之间无强依赖,可以进行并行训练。

2)GBDT详解

GBDT的原理很简单

  • 所有弱分类器的结果相加等于预测值。
  • 每次都以当前预测为基准,下一个弱分类器去拟合误差函数对预测值的残差(预测值与真实值之间的误差)。
  • GBDT的弱分类器使用的是树模型。

如图是一个非常简单的帮助理解的示例,我们用GBDT去预测年龄:

  • 第一个弱分类器(第一棵树)预测一个年龄(如20岁),计算发现误差有10岁;
  • 第二棵树预测拟合残差,预测值6,计算发现差距还有4岁;
  • 第三棵树继续预测拟合残差,预测值3,发现差距只有1岁了;
  • 第四课树用1岁拟合剩下的残差,完成。

最终,四棵树的结论加起来,得到30岁这个标注答案(实际工程实现里,GBDT是计算负梯度,用负梯度近似残差)。

(1)GBDT与负梯度近似残差

回归任务下,GBDT在每一轮的迭代时对每个样本都会有一个预测值,此时的损失函数为均方差损失函数:

$$ l(y_{i}, \hat{y_{i}})=\frac{1}{2}(y_{i}-\hat{y_{i}})^{2} $$

损失函数的负梯度计算如下:

$$ -[\frac{\partial l(y_{i}, \hat{y_{i}})}{\partial \hat{y_{i}}}]=(y_{i}-\hat{y_{i}}) $$

可以看出,当损失函数选用「均方误差损失」时,每一次拟合的值就是(真实值-预测值),即残差。

(2)GBDT训练过程

我们来借助1个简单的例子理解一下GBDT的训练过程。假定训练集只有4个人 (A,B,C,D),他们的年龄分别是 (14,16,24,26)。其中,A、B分别是高一和高三学生;C、D分别是应届毕业生和工作两年的员工。

我们先看看用回归树来训练,得到的结果如下图所示:

接下来改用GBDT来训练。由于样本数据少,我们限定叶子节点最多为2(即每棵树都只有一个分枝),并且限定树的棵树为2。最终训练得到的结果如下图所示:

上图中的树很好理解:A、B年龄较为相近,C、D年龄较为相近,被分为左右两支,每支用平均年龄作为预测值。

  • 我们计算残差(即「实际值」-「预测值」),所以A的残差14-15=-1。
  • 这里A的「预测值」是指前面所有树预测结果累加的和,在当前情形下前序只有一棵树,所以直接是15,其他多树的复杂场景下需要累加计算作为A的预测值。

上图中的树就是残差学习的过程了:

  • 把A、B、C、D的值换作残差-1、1、-1、1,再构建一棵树学习,这棵树只有两个值1和-1,直接分成两个节点:A、C在左边,B、D在右边。
  • 这棵树学习残差,在我们当前这个简单的场景下,已经能保证预测值和实际值(上一轮残差)相等了。
  • 我们把这棵树的预测值累加到第一棵树上的预测结果上,就能得到真实年龄,这个简单例子中每个人都完美匹配,得到了真实的预测值。

最终的预测过程是这样的:

  • A:高一学生,购物较少,经常问学长问题,真实年龄14岁,预测年龄A = 15 – 1 = 14
  • B:高三学生,购物较少,经常被学弟提问,真实年龄16岁,预测年龄B = 15 + 1 = 16
  • C:应届毕业生,购物较多,经常问学长问题,真实年龄24岁,预测年龄C = 25 – 1 = 24
  • D:工作两年员工,购物较多,经常被学弟提问,真实年龄26岁,预测年龄D = 25 + 1 = 26

综上,GBDT需要将多棵树的得分累加得到最终的预测得分,且每轮迭代,都是在现有树的基础上,增加一棵新的树去拟合前面树的预测值与真实值之间的残差。

2.梯度提升 vs 梯度下降

下面我们来对比一下「梯度提升」与「梯度下降」。这两种迭代优化算法,都是在每1轮迭代中,利用损失函数负梯度方向的信息,更新当前模型,只不过:

  • 梯度下降中,模型是以参数化形式表示,从而模型的更新等价于参数的更新。
  • 梯度提升中,模型并不需要进行参数化表示,而是直接定义在函数空间中,从而大大扩展了可以使用的模型种类。

$$ F=F_{t-1}-\left.\rho_{t} \nabla_{F} L\right|_{F=F_{t-1}} $$

$$ L=\sum_{i} l\left(y_{i}, F\left(x_{i}\right)\right) $$

$$ w_{t}=w_{t-1}-\left.\rho_{t} \nabla_{w} L\right|_{w=w_{t-1}} $$

$$ L=\sum_{i} l\left(y_{i}, f_{w}\left(w_{i}\right)\right) $$

3.GBDT优缺点

下面我们来总结一下GBDT模型的优缺点:

1)优点

  • 预测阶段,因为每棵树的结构都已确定,可并行化计算,计算速度快。
  • 适用稠密数据,泛化能力和表达能力都不错,数据科学竞赛榜首常见模型。
  • 可解释性不错,鲁棒性亦可,能够自动发现特征间的高阶关系。

2)缺点

  • GBDT在高维稀疏的数据集上,效率较差,且效果表现不如SVM或神经网络。
  • 适合数值型特征,在NLP或文本特征上表现弱。
  • 训练过程无法并行,工程加速只能体现在单颗树构建过程中。

4.随机森林 vs GBDT

对比ShowMeAI前面讲解的另外一个集成树模型算法随机森林,我们来看看GBDT和它的异同点。

1)相同点

  • 都是集成模型,由多棵树组构成,最终的结果都是由多棵树一起决定。
  • RF和GBDT在使用CART树时,可以是分类树或者回归树。

2)不同点

  • 训练过程中,随机森林的树可以并行生成,而GBDT只能串行生成。
  • 随机森林的结果是多数表决表决的,而GBDT则是多棵树累加之。
  • 随机森林对异常值不敏感,而GBDT对异常值比较敏感。
  • 随机森林降低模型的方差,而GBDT是降低模型的偏差。

5.Python代码应用与模型可视化

下面是我们直接使用python机器学习工具库sklearn来对数据拟合和可视化的代码:

# 使用Sklearn调用GBDT模型拟合数据并可视化


import numpy as np
import pydotplus
from sklearn.ensemble import GradientBoostingRegressor

X = np.arange(1, 11).reshape(-1, 1)
y = np.array([5.16, 4.73, 5.95, 6.42, 6.88, 7.15, 8.95, 8.71, 9.50, 9.15])

gbdt = GradientBoostingRegressor(max_depth=4, criterion ='squared_error').fit(X, y)

from IPython.display import Image  
from pydotplus import graph_from_dot_data
from sklearn.tree import export_graphviz

# 拟合训练5棵树
sub_tree = gbdt.estimators_[4, 0]
dot_data = export_graphviz(sub_tree, out_file=None, filled=True, rounded=True, special_characters=True, precision=2)
graph = pydotplus.graph_from_dot_data(dot_data)  
Image(graph.create_png())



![](http://image.showmeai.tech/machine_learning_algorithms/176.png)

ShowMeAI相关文章推荐

ShowMeAI系列教程推荐

showmeai

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
12天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
21天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
17天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
55 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
21天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
49 1
|
1月前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
77 1
|
1月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
15天前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
29 0
|
2月前
|
人工智能 算法 测试技术
PAI 大语言模型评测平台现已支持裁判员模型评测
本文将为您介绍如何在 PAI 大语言模型评测平台,基于裁判员模型,评价开源模型或者微调后模型的性能。该功能限时免费,欢迎使用。
|
2月前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
84 1
|
27天前
|
机器学习/深度学习 算法
探索机器学习模型的可解释性
【10月更文挑战第29天】在机器学习领域,一个关键议题是模型的可解释性。本文将通过简单易懂的语言和实例,探讨如何理解和评估机器学习模型的决策过程。我们将从基础概念入手,逐步深入到更复杂的技术手段,旨在为非专业人士提供一扇洞悉机器学习黑箱的窗口。