YOLOv4团队开源最新力作!1774fps、COCO最高精度,分别适合高低端GPU的YOLO

简介: Principles of model scalingGeneral principle of model scalingScaling Tiny Models for Low-End DevicesScaling Large Models for High-End GPUSScaled-YOLOv4Experiments
【新智元导读】YOLOv4的原班人马在YOLO系列的继续扩展,从影响模型扩展的几个不同因素出发,提出了两种分别适合于低端GPU和高端GPU的YOLO。

摘要

该文提出一种“网路扩展(Network Scaling)”方法,它不仅针对深度、宽度、分辨率进行调整,同时调整网络结果,作者将这种方法称之为Scaled-YOLOv4。

由此得到的YOLOv4-Large取得了SOTA结果:在MS-COCO数据集上取得了55.4%AP(73.3% AP50),推理速度为15fps@Tesla V100;在添加TTA后,该模型达到了55.8%AP(73.2%AP50)。截止目前,在所有公开论文中,YOLOv-Large在COCO数据集上取得最佳指标。而由此得到的YOLOv4-tiny取得了22.0%AP(42.0%AP50),推理速度为443fps@TRX 2080Ti;经由TensorRT加速以及FP16推理,batchsize=4时其推理速度可达1774fps。

该文的主要贡献包含以下几点:

  • 设计了一种强有力的“网络扩展”方法用于提升小模型的性能,可以同时平衡计算复杂度与内存占用;
  • 设计了一种简单而有效的策略用于扩展大目标检测器;
  • 分析了模型扩展因子之间的相关性并基于最优划分进行模型扩展;
  • 通过实验证实:FPN structure is inherently a once-for-all structure
  • 基于前述分析设计了两种高效模型:YOLOv4-tiny与YOLOv4-Large。

12.jpg

Principles of model scaling

在这部分内容里面,我们将讨论一下模型扩展的一些准则。从三个方面展开介绍:(1) 量化因子的分析与设计;(2) 低端GPU上tiny目标检测器的量化因子;(3) 高端GPU上目标检测器的量化因子设计分析。

General principle of model scaling

When the scale is up/down, the lower/higher the quantitative cost we want to increase/decrease, the better.  ----author

上面给出了模型扩展所需要考虑的一些因素。接下来,我们将分析几种不同的CNN模型(ResNet, ResNeXt, DarkNet)并尝试理解其相对于输入大小、层数、通道数等的定量损失。

对于包含k层b个通道的CNN而言,ResNet的计算量为:

k*{convlx1,6/4-conv3x3,6/4-convlx1,b}

ResNeXt的是:

k* {conv1x1,b/2-gconv3x3/32,6/2-convl x1,6}

DarkNet的是:

k* {convlx1,b/2-conv3 x 3,6}。

假设用于调整图像大小、层数以及通道数的因子分别为α  ,β  , γ,其调整对应的FLOPs变化见下表,可以看到:它们与FLOPs提升的关系分别是square, linear, square。

13.jpg

CSPNet可以应用与不同的CNN架构中,且可以降低参数量与计算量,同时还可以提升精度与降低推理耗时。

下表给出了CSPNet应用到ResNet,ResNeXt与DarkNet时的FLOPs变化,可以看到:新的架构可以极大的降低计算量,ResNet降低23.5%,ResNeXt降低46.7%,DarkNet降低50.0%。

因此CSP-ized是适合模型扩张的最佳模型。

14.jpg

Scaling Tiny Models for Low-End Devices

对于低端设备而言,模型的推理速度不仅受计算量、模型大小影响,更重要的是,外部设备的硬件资源同样需要考虑。

因此,当进行tiny模型扩展时,我们必须考虑带宽、MACs、DRAM等因素。为将上述因素纳入考量范围,其设计原则需要包含西面几个原则:

  • Make the order of computation less than O(whkb²).

相比大模型,轻量型模型的不同之处在于:参数利用率更高(保采用更少的计算量获得更高的精度)。当进行模型扩展时,我们期望计算复杂度要尽可能的低。

下表给出了两种可以高效利用参数的模型对比。

15.jpg

对于通用CNN来说,g,b,k之间的性见上表(k<<g<b)。因此,DenseNet的计算复杂度为O(whgbk),OSANet的计算复杂度为O(max(whbg,whkg²)

两者的计算复杂度阶段都比ResNet(O(whkb²)的更低。在这里作者选用了OSANet作为tiny模型的选型。


  • Minimize/balance size of feature map.


0.png
0.png

1.jpg

Maintain the same number of channels after convolution

1.png

  • Minimize Convolutional Input/Output(CIO)


CIO是一个用来评价DRAM的IO状态的度量准则,下表给出了OSA,CSP的CIO对比。当kg>b/2时,本文所提出的CSPOSANet具有最佳CIO。

2.jpg

Scaling Large Models for High-End GPUS

由于我们期望提升扩张CNN模型的精度,同时保持实时推理速度,这就要求我们需要从目标检测器的所有扩展因子中寻找最佳组合。

通常而言,我们可以调整目标检测器的输入、骨干网络以及neck的尺度因子,潜在的尺度因子见下表。

3.jpg

图像分类与目标检测的最大区别在于:前者仅需要对图像中的最大成分进行分类,而后者则需要预测图像中每个目标的位置。

在单阶段目标检测器中,每个位置的特征向量用于预测类别、目标的大小,而目标大小的预测则依赖于特征向量的感受野。在CNN中,与感受野最相关的当属stage,而FPN结构告诉我们:更高的阶段更适合预测大目标。

4.jpg

上表汇总了与感受野相关因素,可以看到:宽度扩展不会影响感受野。当输入图像分辨率提升后,为保持感受野不变,那么就需要提升depth或者stage。也就是说:depth和stage具有最大的影响。

因此,当进行向上扩增时,我们需要在输入分辨率、stage方面进行扩增以满足实时性,然后再进行depth和width的扩增。


Scaled-YOLOv4


接下来,我们将尝试把YOLOv4扩展到不同的GPU(包含低端和高端GPU)。

CSP-ized YOLOv4

YOLOv4是一种针对通用GPU设计的实时目标检测方案。在这里,作者对YOLOv4进行重新设计得到YOLOv4-CSP以获取最佳的速度-精度均衡。

Backbone

在CSPDarknet53的设计中,跨阶段的下采样卷积计算量并未包含在残差模块中。因此,作者推断:每个CSPDarknet阶段的计算量为whb²(9/4+3/4+5k/2)。从该推断出发,CSPDarknet比DarkNet具有更好的计算量优势(k>1)。

CSPDarkNet53每个阶段的残差数量分别为1-2-8-8-4。为得到更好的速度-精度均衡,作者将首个CSP阶段转换为原始的DarkNet残差层。

Neck

更有效的降低参数量,作者将PAN架构引入到YOLOv4中。PAN架构的处理流程见下图a,它主要集成了来自不同特征金字塔的特征。改进后的处理流程见下图b,它还同时引入了ChannelSplitting机制。这种新的处理方式可以节省40%计算量。

5.jpg

SPP

原始的SPP模块位于Neck中间部分,作者同样将SPP插入到CSPPAN中间位置,见上图b。

YOLOv4-tiny

YOLOv4是专为低端GPU而设计的一种架构,其计算模块见下图。在这里,作者采用CSPOSANet+PCB架构构成了YOLOv4的骨干部分。

6.jpg在计算模块中,g=b/2.b/2+kg=2b。通过计算,作者推断得到k=3,其对应的计算单元示意图见上图。至于YOLOv4-tiny的通道数信息,作者延续了YOLOv3-tiny的设计。

YOLOv4-large

YOLOv4-large是专为云端GPU而设计的一种架构,主要目的在于获得更好的目标检测精度。作者基于前述分析设计了一个全尺寸的YOLOv4-P5并扩展得到了YOLOv4-P6和YOLOv4-P7。其对应的网络结构示意图见下图。

7.jpg

作者通过实验发现:YOLOv4-P6(宽度缩放因子1)可以达到30fps的实时处理性能;YOLOv4-P7(宽度缩放因子1.25)可以达到15fps的处理速度。

Experiments

作者在MSCOCO-2017数据集上验证了所提Scaled-YOLOv4的性能,作者提到并未采用ImageNet进行预训练,所有YOLOv4模型均从头开始训练。

YOLOv4-tiny的训练了600epoch;YOLOv4CSP训练了300epoch;YOLOv4-large先训练了300epoch,然后采用更强的数据增广技术训练了150epoch。其他训练相关的超参作者采用k-mean与遗传算法决定。

Ablation study on CSP-ized model

作者首先针对CSP-ized模型进行了消融实验分析,结果见下表。作者从参数量、计算量、处理流程以及平均精度方面进行了CSP-ization的影响性分析。

作者采用Darknet53作为骨干网络,选择FPN+SPP与PAN+SPP作为neck进行消融分析。作者同时还采用了LeakyReLU与Mish进行对比分析。

8.jpg

从上表可以看到:CSP-ized模型可以极大的降低参数量与计算量达32%,同时带来性能上的提升;同时还可以看到:CD53s-CFPNSPP-Mish、CD53s-CPANSPP-Leaky与D53-FPNSPP-Leaky相同的推理速度,但具有更高的指标(分别搞1%和1.6%AP),且具有更低的计算量。

Ablation study on YOLOv4-tiny

接下来,我们将通过实验来证实:CSPNet+partial的灵活性。作者将其与CSP-Darknet53进行了对比,结果见下表。

9.jpg从上表可以看到:所设计的PCB技术可以使模型更具灵活性,因为它可以更具实际需要进行结构调整。

同时也证实:线性缩放方式的局限性。作者最终选择COSA-2x2x作为YOLOv4-tiny,因其取得最佳的精度-速度均衡。

Scaled-YOLOv4 for object detection

10.jpg

上图给出了本文所提Scaled-YOLOv4与其他SOTA目标检测方法的对比,可以看到:所提方法在不同约束下均取得了最佳的均衡。

比如,YOLOv4-CSP与EfficientDet-D3具有相同的精度,但具有更开的推理速度(1.9倍);YOLOv4-P5与EfficientDet-D5具有相同的精度,推理速度则快2.9倍。

类似现象可见:YOLOv4-P6 vs EfficientDet-D7, YOLOv4-P7 vs EfficientDet-D7x。更重要的是:所有Scaled-YOLOv4均达到了SOTA结果。

与此同时,作者还给出了添加TTA后的YOLOv4-large性能,可以看到分别可以得到1.1%,0.6%与0.4%AP的指标提升。

11.jpg

作者还对比了YOLOv4-tiny与其他tiny目标检测器的性能对比,见下表。可以看到:YOLOv4-tiny取得了最佳的性能。

12.jpg

最后,作者在不同的嵌入式GPU上测试了YOLOv4-tiny的性能,见下图。可以看到:无论哪种硬件平台下,YOLOv4-tiny均可以达到实时性。

经过TensorRT FP16优化后的YOLOv40tiny最高可以达到1774fps的推理速度。

13.jpg



相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
2月前
|
人工智能 中间件 数据库
沐曦 GPU 融入龙蜥,共筑开源 AI 基础设施新底座
沐曦自加入社区以来,一直与龙蜥社区在推动 AIDC OS 的开源社区建设等方面保持合作。
|
8月前
|
人工智能 Linux API
119K star!无需GPU轻松本地部署多款大模型,DeepSeek支持!这个开源神器绝了
"只需一行命令就能在本地运行Llama 3、DeepSeek-R1等前沿大模型,支持Windows/Mac/Linux全平台,这个开源项目让AI开发从未如此简单!"
494 0
|
9月前
|
人工智能 自然语言处理 API
Proxy Lite:仅3B参数的开源视觉模型!快速实现网页自动化,支持在消费级GPU上运行
Proxy Lite 是一款开源的轻量级视觉语言模型,支持自动化网页任务,能够像人类一样操作浏览器,完成网页交互、数据抓取、表单填写等重复性工作,显著降低自动化成本。
682 11
Proxy Lite:仅3B参数的开源视觉模型!快速实现网页自动化,支持在消费级GPU上运行
|
9月前
|
机器学习/深度学习 人工智能 物联网
MiniMind:2小时训练出你的专属AI!开源轻量级语言模型,个人GPU轻松搞定
MiniMind 是一个开源的超小型语言模型项目,帮助开发者以极低成本从零开始训练自己的语言模型,最小版本仅需25.8M参数,适合在普通个人GPU上快速训练。
1821 10
MiniMind:2小时训练出你的专属AI!开源轻量级语言模型,个人GPU轻松搞定
|
10月前
|
机器学习/深度学习 人工智能 并行计算
Unsloth:学生党福音!开源神器让大模型训练提速10倍:单GPU跑Llama3,5小时变30分钟
Unsloth 是一款开源的大语言模型微调工具,支持 Llama-3、Mistral、Phi-4 等主流 LLM,通过优化计算步骤和手写 GPU 内核,显著提升训练速度并减少内存使用。
1501 3
Unsloth:学生党福音!开源神器让大模型训练提速10倍:单GPU跑Llama3,5小时变30分钟
|
9月前
|
人工智能 负载均衡 调度
COMET:字节跳动开源MoE训练加速神器,单层1.96倍性能提升,节省百万GPU小时
COMET是字节跳动推出的针对Mixture-of-Experts(MoE)模型的优化系统,通过细粒度的计算-通信重叠技术,显著提升分布式训练效率,支持多种并行策略和大规模集群部署。
520 9
|
11月前
|
人工智能 文字识别 异构计算
NVIDIA-Ingest:英伟达开源智能文档提取及结构化工具,支持 GPU 加速和并行处理
NVIDIA-Ingest 是英伟达开源的智能文档提取工具,支持 PDF、Word、PPT 等多种格式,提供并行处理和 GPU 加速,适用于企业内容管理和生成式应用。
523 18
NVIDIA-Ingest:英伟达开源智能文档提取及结构化工具,支持 GPU 加速和并行处理
|
缓存 算法 关系型数据库
MIT韩松团队长上下文LLM推理高效框架DuoAttention:单GPU实现330万Token上下文推理
麻省理工学院韩松团队提出DuoAttention框架,旨在提高大型语言模型(LLM)处理长上下文的效率。该框架通过区分检索头和流式头,仅对检索头应用全键值缓存,减少内存消耗和计算时间,同时保持模型长上下文处理能力。实验结果显示,DuoAttention在多种模型架构上显著提升了推理效率,为LLM的实际应用提供了新可能。
341 14
|
人工智能 语音技术 UED
仅用4块GPU、不到3天训练出开源版GPT-4o,这是国内团队最新研究
【10月更文挑战第19天】中国科学院计算技术研究所提出了一种名为LLaMA-Omni的新型模型架构,实现与大型语言模型(LLMs)的低延迟、高质量语音交互。该模型集成了预训练的语音编码器、语音适配器、LLM和流式语音解码器,能够在不进行语音转录的情况下直接生成文本和语音响应,显著提升了用户体验。实验结果显示,LLaMA-Omni的响应延迟低至226ms,具有创新性和实用性。
480 1
|
2月前
|
人工智能 算法 调度
阿里云ACK托管集群Pro版共享GPU调度操作指南
本文介绍在阿里云ACK托管集群Pro版中,如何通过共享GPU调度实现显存与算力的精细化分配,涵盖前提条件、使用限制、节点池配置及任务部署全流程,提升GPU资源利用率,适用于AI训练与推理场景。
298 1

热门文章

最新文章