ARK Invest最新报告 :AI训练成本下降了100倍,但训练最先进AI模型的成本惊人

简介: 方舟投资的最新一项报告指出,AI训练成本从2017年至2019年下降了100倍,但人工智能发展尚处于初期阶段。该报告同时发现AI算法效率每16个月翻一番,与OpenAI的报告结果一致。

微信图片_20220109011716.jpg

 机器学习训练系统越来越便宜了。


 方舟投资(ARK Invest)近日发布了一篇分析报告显示,AI训练成本的提高速度是摩尔定律(Moore’s law)的50倍。摩尔定律是指计算机硬件性能每两年提升一倍。


两年间,AI训练成本下降了100倍


方舟评估委员会在其报告中发现,从1960年到2010年,按照摩尔定律,用于训练的AI算力翻了一番。


人工智能计算的复杂度自2010年以来每年飙升10倍(每秒千万亿次运算)。与此同时,过去三年的训练成本每年下降10倍。 2017年,在公共云上训练像 ResNet-50这样的图像分类器的成本约为1000美元,到了2019年只需大约10美元。 方舟评估委员会预测,按照目前的速度,到今年年底,其训练成本应降至1美元


微信图片_20220109011719.png


该公司预计,随着这一成本的下降,推理的成本(在生产过程中运行一个训练有素的模型)将会下降。 比如,在过去两年中,对十亿张图像进行分类的成本从10,000美元降至仅0.03美元。


微信图片_20220109011721.png


对于那些与像谷歌 DeepMind 这样资金雄厚的公司进行竞争的初创公司来说,这无疑是天籁之音。


DeepMind 去年亏损5.72亿美元,且背负着超过10亿美元的债务。 尽管一些专家认为,科技巨头无可匹敌的实验室有能力从事新的研究,但训练成本也是AI工作中不可避免的开支,不论是在企业、学术界还是其他领域。


AI算法效率每16个月翻一番,与OpenAI报告结果一致


方舟投资的这些发现似乎与 OpenAI 最近一份报告的发现结果一致。 OpenAI 的报告指出,自 2012 年以来,人工智能模型在 ImageNet 分类中训练神经网络达到相同性能所需的计算量,每 16 个月减少了 2 倍


微信图片_20220109011723.png


OpenAI观察到16个月AI模型的效率倍增时间(任意给定时间的最低计算点用蓝色表示,测量点用灰色表示)


据 OpenAI 介绍,它发现谷歌的 Transformer 架构超越了以前由谷歌开发的最先进模型——seq2seq,在seq2seq推出三年后,其计算量减少至原来的1/61。 


谷歌的 Transformer 架构超越了之前的最先进模型—— seq2seq,后者也是谷歌开发的,在 seq2seq 推出三年后,计算能力下降了61倍。 Deepmind 的 AlphaZero 是一个从零开始自学如何掌握国际象棋、将棋和围棋游戏的系统。


微信图片_20220109011725.jpg


仅仅一年后,DeepMind 的 AlphaZero 在围棋比赛中,其计算量比 AlphaGoZero 少 8 倍,就能与 AlphaGoZero 匹敌。


AI发展尚处于初期阶段,训练最先进AI模型的成本依然惊人


方舟投资报告指出, 硬件和软件的突破使得AI训练成本下降。


 在过去的三年中,芯片和系统的设计不断发展,为深度学习添加了专用硬件,从而使性能提高了16倍。 例如, Nvidia于2017年发布的 V100显卡,比三年前发布的 K80 快1800%  (显卡通常用于训练大型人工智能系统) 。


在2018年至2019年间,由于麻省理工学院、谷歌、 Facebook、微软、 IBM、 Uber 等公司的软件创新,V100的训练性能提高了大约800% 。


微信图片_20220109011727.png


ARK 分析师 James Wang 写道,「从AI训练成本下降的速度来看,人工智能发展还处于初期。」 摩尔定律的第一个十年里,晶体管数量每年翻一番。


我们在人工智能训练和推断中看到从10倍到100倍的成本下降表明,人工智能的发展尚处于初级阶段,未来几十年可能会出现较慢但持续的增长。


值得注意的是,虽然AI模型训练的费用似乎在下降,但是在云中开发复杂ML模型仍然昂贵得让人望而却步


微信图片_20220109011729.png


根据 Synced 最近的一份报告,华盛顿大学的 Grover 专门用于生成和检测虚假新闻,训练最大的Grover Mega模型的总费用为2.5万美元。 


OpenAI 花费了1200万美元来训练它的 GPT-3语言模型。 


而谷歌花费了大约6912美元来训练 BERT,这是一种双向变换模型,它重新定义了11种自然语言处理任务的最新技术。 


参考链接:
https://venturebeat.com/2020/06/04/ark-invest-ai-training-costs-dropped-100-fold-between-2017-and-2019/https://ark-invest.com/analyst-research/ai-training/

相关文章
|
23天前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
70 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
101 2
|
15天前
|
人工智能
AI科学家太多,谁靠谱一试便知!普林斯顿新基准CORE-Bench:最强模型仅有21%准确率
【10月更文挑战第21天】普林斯顿大学研究人员提出了CORE-Bench,一个基于计算可重复性的AI代理基准,涵盖计算机科学、社会科学和医学领域的270个任务。该基准旨在评估AI代理在科学研究中的准确性,具有多样性、难度级别和现实相关性等特点,有助于推动AI代理的发展并提高计算可重复性。
35 4
|
14天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
32 1
|
14天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,大模型在各领域的应用日益广泛。然而,将其私有化部署到企业内部面临诸多挑战,如硬件资源需求高、数据隐私保护、模型可解释性差、更新维护成本高等。本文探讨了这些挑战,并提出了优化硬件配置、数据加密、可视化工具、自动化更新机制等解决方案,帮助企业顺利实现大模型的私有化部署。
36 1
|
24天前
|
人工智能 自然语言处理
从迷茫到精通:揭秘模型微调如何助你轻松驾驭AI新热点,解锁预训练模型的无限潜能!
【10月更文挑战第13天】本文通过简单的问题解答形式,结合示例代码,详细介绍了模型微调的全流程。从选择预训练模型、准备新任务数据集、设置微调参数,到进行微调训练和评估调优,帮助读者全面理解模型微调的技术细节和应用场景。
61 6
|
29天前
|
机器学习/深度学习 人工智能 TensorFlow
解锁AI潜力:让开源模型在私有环境绽放——手把手教你搭建专属智能服务,保障数据安全与性能优化的秘密攻略
【10月更文挑战第8天】本文介绍了如何将开源的机器学习模型(如TensorFlow下的MobileNet)进行私有化部署,包括环境准备、模型获取与转换、启动TensorFlow Serving服务及验证部署效果等步骤,适用于希望保护用户数据并优化服务性能的企业。
49 4
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
揭开模型微调Fine-Tuning的神秘面纱:如何在预训练基础上巧妙调整,解锁定制AI解决方案的秘密武器
【10月更文挑战第8天】模型微调是在预训练模型基础上,利用特定领域数据进一步训练,以优化模型在特定任务上的表现。此方法广泛应用于自然语言处理和计算机视觉等领域,通过调整预训练模型的部分或全部参数,结合适当的正则化手段,有效提升模型性能。例如,使用Hugging Face的Transformers库对BERT模型进行微调,以改善文本匹配任务的准确率。
53 1
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
11 1
|
1天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
16 10