AI数据分析创企ActionIQ获1300万美元A轮融资,红杉领投

简介:

AI数据分析创企ActionIQ获1300万美元A轮融资,红杉领投

营销人员不一定要懂技术,但如果想要筛选诸多不同来源的数据,而你又不懂技术,那就麻烦了。ActionIQ就应运而生,它能帮助营销人员筛选数据,而无需他们写任何一条代码。成立于2014年,ActionIQ在其纽约办公处共计有员工40名。

昨日,这家公司获得了1300万美元融资,由红杉资本领投,现有投资方FirstMark Capital、Amplify Partners、Bowery Capital以及新投资方斯坦福大学的斯坦福工程风投基金均有参投。目前ActionIQ的融资总额达到了1500万美元,红杉资本还领投了其种子轮融资。新一轮融资将用于增加销售和市场营销力度,从而进一步地开发业务。

这家创企主要提供的SaaS软件能连接多个公司数据源,包括邮箱、客户关系管理、点击量,并将它们集中到一个操作面板上。ActionIQ 的创始人兼首席执政官Tasso Argyros 告诉媒体:“在这个全渠道销售的时代,我们能让营销人员利用数据驱动来扩大销售,他们无需懂得任何工程技术也不需要敲任何一条代码。我们的软件内置了人工智能层,能为营销人员提供各种数据支持,让他们专心于营销策略和活动。”Argyros还成立过Aster Data Systems,2011年,他将这家数据管理创企以2.63亿美元出售给了Teradata。

不少位列福布斯Global 2000的公司、B2C品牌以及订阅公司都成为了ActionIQ的客户,其中包括Gilt Groupe、Blue Apron和Frame.ai。但Argyros并没有透露具体的客户数量以及订阅费用。这位首席执政官认为公司的竞争对手包括Adobe、Oracle、IBM、Salesforce等云端营销商。



   


 


  

本文转自d1net(转载)

目录
相关文章
|
4月前
|
机器学习/深度学习 传感器 人工智能
AI与未来医疗:重塑健康管理新格局随着人工智能(AI)技术的飞速发展,医疗行业正迎来一场前所未有的变革。AI不仅在数据分析、诊断支持方面展现出巨大潜力,还在个性化治疗、远程医疗等多个领域实现了突破性进展。本文将探讨AI技术在医疗领域的具体应用及其对未来健康管理的影响。
人工智能(AI)正在彻底改变医疗行业的面貌。通过深度学习算法和大数据分析,AI能够迅速分析海量的医疗数据,提供精准的诊断和治疗建议。此外,AI在远程医疗、药物研发以及患者管理等方面也展现出了巨大的潜力。本文将详细探讨这些技术的应用实例,并展望其对健康管理的深远影响。
|
4月前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
87 0
|
5月前
|
存储 SQL 人工智能
AnalyticDB for MySQL:AI时代实时数据分析的最佳选择
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比
|
6月前
|
机器学习/深度学习 人工智能 TensorFlow
🔥零基础逆袭!Python数据分析+机器学习:TensorFlow带你秒变AI大师
【7月更文挑战第29天】在这个数据驱动的时代,掌握Python与机器学习技能是进入AI领域的关键。即使从零开始,也能通过TensorFlow成为AI专家。
77 8
|
5月前
|
人工智能 供应链 数据挖掘
解锁商业数据金矿!AI Prompt秘籍:让你的数据分析秒变未来视野
【8月更文挑战第1天】在数据驱动的时代,AI Prompt技术正革新商业数据分析领域,使其从梦想变为现实。AI Prompt通过预设指令增强AI模型的任务执行能力,大幅提升数据处理效率与准确性。以零售业为例,借助AI Prompt技术,企业能迅速分析销售数据,预测市场趋势,并优化决策。示例代码展示了如何利用AI Prompt进行销售预测及库存调整建议,显著提升了预测精度和决策效率,为企业带来竞争优势。随着技术进步,AI Prompt将在商业智能中扮演更重要角色。
110 4
|
5月前
|
机器学习/深度学习 人工智能 供应链
💰钱途无量!掌握AI Prompt在商业数据分析中的5大赚钱技巧
【8月更文挑战第1天】在数据驱动的商业时代,掌握AI Prompt技术为企业开启财富之门。本文探讨通过AI Prompt实现商业数据分析中的五大赚钱技巧:1)精准市场预测,利用历史数据预测未来趋势;2)个性化营销,分析客户行为提高转化率;3)优化库存管理,智能调整采购计划降低成本;4)风险预警,实时监测并提出应对策略;5)数据洞察驱动创新,挖掘深层规律引领市场。掌握这些技巧,企业将在竞争中脱颖而出,实现商业价值最大化。
91 2
|
5月前
|
机器学习/深度学习 数据采集 人工智能
🔍深度揭秘!AI Prompt如何重塑商业数据分析,让决策快人一步
【8月更文挑战第1天】在数字化转型中,商业数据分析至关重要。AI Prompt技术作为智能分析的催化剂,通过自然语言指令高效处理大规模数据,挖掘深层信息,加速精准决策。基于深度学习等技术,分析师仅需简单Prompt即可自动完成从数据清洗到生成决策建议的全过程。例如,零售业可通过此技术快速分析销售数据,优化商品陈列。AI Prompt简化流程,降低门槛,使企业能迅速响应市场变化,有望成为商业分析的标准工具,引领高效决策的新时代。
96 2
|
5月前
|
人工智能 数据挖掘 Python
💡灵感爆发!AI Prompt创意引导,让商业数据分析报告也能讲故事
【8月更文挑战第1天】在商业领域, 数据分析报告常被视为枯燥的数据堆砌。但AI技术, 尤其是AI Prompt的创意引导功能, 正革新数据呈现方式。传统报告重准确性轻生动性; 而AI Prompt创意引导下的报告则如电影般, 通过故事化叙述使复杂洞察变得生动有趣。例如分析电商平台季节性销售时, AI Prompt可以生成主题为“穿越四季购物之旅”的创意指令, 将数据编织成引人入胜的故事篇章, 使读者不仅能获取商业洞察, 更能感受到数据背后的情感与温度, 大大提升报告的吸引力和传播力。这标志着数据分析报告新时代的到来。
100 0
|
6月前
|
机器学习/深度学习 人工智能 数据挖掘
从0到1构建AI帝国:PyTorch深度学习框架下的数据分析与实战秘籍
【7月更文挑战第30天】PyTorch以其灵活性和易用性成为深度学习的首选框架。
87 2
|
6月前
|
机器学习/深度学习 数据挖掘 TensorFlow