DeepMind发布Acme,高效分布式强化学习算法框架轻松编写RL智能体

简介: DeepMind 本周发布了一个强化学习优化框架Acme,可以让AI驱动的智能体在不同的执行规模上运行,从而简化强化学习算法的开发过程。

微信图片_20220109010702.jpg


DeepMind 本周发布了一个强化学习优化框架 Acme,可以让AI驱动的智能体在不同的执行规模上运行,从而简化强化学习算法的开发过程。 Acme 背后的工程师和研究人员共同撰写了一篇关于这项工作的技术论文,根据他们的说法,用这种方法创建智能体,并行性会更好。      


 微信图片_20220109010704.png


强化学习可以让智能体与环境互动,生成他们自己的训练数据,这在电子游戏、机器人技术、自动驾驶机器人出租车等领域取得了突破。 


随着所使用的培训数据量的增加,这促使设计了一个系统,使智能体与环境实例相互作用,迅速积累经验。


DeepMind 断言,将算法的单进程原型扩展到分布式系统通常需要重新实现相关的智能体,这就是 Acme 框架的用武之地 


DeepMind研究员写道,「Acme 是一个用于构建可读、高效、面向研究的 RL 算法的框架。Acme 的核心是设计用于简单描述 RL 智能体,这些智能体可以在不同规模的执行中运行,包括分布式智能体。」


「通过发布 Acme,我们的目标是使学术界和工业实验室开发的各种 RL 算法的结果更容易为整个机器学习社区复制和扩展。」


Acme 框架要实现的目标?


研究者明确指出了Acme框架的高级目标


 1 实现方法和结果可重复性2 简化新算法设计的方式3 提高RL智能体的可读性 如何实现这一目标? 从最高层次来看,我们可以将 Acme 视为一个经典的强化学习接口,其作用是将 actor(比如一个动作选择智能体)连接到环境。 actor 是一个具有选择动作、观察并实现自我更新能力的简单接口。


 从内部看,学习智能体可以拆分为「执行」和「学习」两部分。从表面上看,这使得我们在不同的多智能体之间重复使用 acting portion。


 但是,更重要的是,这提供了一个可以对学习过程进行划分和并行化处理的关键边界。我们甚至可以从此处按比例缩小规模,并在没有环境,只有固定数据集的情况下无缝攻击批RL设置(batch RL setting)。


这些不同级别的复杂度的图示如下:


      微信图片_20220109010706.gif


除了 Acme 的基础框架之外,研究人员还发布了用 Acme 框架创建的大量智能体的单进程实例。 通过跨越执行/学习边界,我们能够以分布式方式运行这些相同的智能体,过程中的改变最小。


Acme 框架首个版本主要针对学生和研究人员使用最多的单进程智能体。 研究者在 control suite、Atari 和 bsuite 等环境中对这些智能体进行了基准测试。

QQ图片20220109010759.png

点击查看原视频链接

利用 Acme 框架进行智能体训练的示例  


Acme 框架有哪些优势?


Acme是一组开发套件,用于培训强化学习智能体,用来解决复杂性和规模的问题,其组件用于从算法和策略到学习者等不同抽象层次来指导代理。 


这样做可以让idea快速迭代,并在生产过程中对这些 idea 进行评估,主要是通过训练循环、强迫性日志记录和检查点。 


一种特殊类型的 Acme actor 包括执行和学习两个组件ーー它们都被称为「智能体」ーー它们的状态更新是由learner组件中的一些步骤触发的。也就是说,智能体大部分情况会把他们的行动选择权交给他们自己的执行组件。


在 Acme 框架中,actors与环境密切交互,通过观察环境,执行动作,反过来为环境提供素材。


  微信图片_20220109010709.png


在观察了随后发生的变化后,actors 有机会更新其状态,这通常与其行动选择策略有关,这些策略决定了它们为应对环境而采取的行动。 


Acme 提供了一个位于 actor 和 learner 组件之间的数据集模块,该模块由一个名为 Reverb 的低级存储系统支持,DeepMind 本周也刚刚发布这个系统。此外,该框架建立了一个接入Reverb的通用接口,使不同风格的预处理和观察数据的持续聚合成为可能。 


Reverb是一个专为机器学习研究设计的高效、易用的数据存储和传输系统。

Reverb主要作为分布式强化学习算法的经验回放(experience replay)系统,但该系统也支持多种数据结构表示,如FIFO、LIFO和优先级队列等。


      微信图片_20220109010711.png


在 Acme 当中,执行、学习和存储组件被划分为不同的线程或进程,这带来了两个好处: 环境交互与学习过程非同步发生,以及数据生成的加速。


在其他地方,Acme允许从学习到执行以任何速率运行,只要流程保持在一定的定义公差内就可以不受阻碍。


例如,如果一个进程由于网络问题或资源不足而落后于另一个进程,速率限制器将阻塞落后者,而另一个进程将赶上来。 除了这些工具和资源,Acme 还附带了一组示例智能体,作为各自强化学习算法以及强大研究基线的参考实现。 


DeepMind研究人员写道,「通过提供这些... ... 我们希望 Acme 将有助于提高[强化学习]的可再生性地位,并为学术研究者提供简单的组件来创造新的智能体。」「此外,我们的baseline应该提供额外的衡量标准,以衡量该领域的进展。」


GitHub地址:https://github.com/deepmind/acme


论文地址:https://arxiv.org/pdf/2006.00979v1.pdf


参考链接:
https://venturebeat.com/2020/06/03/deepmind-releases-acme-a-distributed-framework-for-reinforcement-learning-algorithm-development/https://deepmind.com/research/publications/Acme

相关文章
|
1月前
|
机器学习/深度学习 算法 决策智能
北大领衔,多智能体强化学习研究登上Nature子刊
北京大学研究团队近日在《Nature》子刊上发布了一篇关于多智能体强化学习(MARL)的论文,提出了一种高效且可扩展的MARL框架,旨在解决大规模网络控制系统中的决策问题。该框架实现了智能体间的局部通信,减少了通信成本与计算复杂度,并在交通、电力及疫情防控等多个真实场景实验中,显著提升了决策性能。论文链接:https://www.nature.com/articles/s42256-024-00879-7。尽管该研究仍存局限,但为MARL的应用提供了新思路。
49 2
|
13天前
|
敏捷开发 机器学习/深度学习 数据采集
端到端优化所有能力,字节跳动提出强化学习LLM Agent框架AGILE
【10月更文挑战第23天】字节跳动研究团队提出AGILE框架,通过强化学习优化大型语言模型(LLM)在复杂对话任务中的表现。该框架将LLM作为核心决策模块,结合记忆、工具和专家咨询模块,实现智能体的自我进化。实验结果显示,AGILE智能体在ProductQA和MedMCQA数据集上优于GPT-4。
68 4
|
1月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
106 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
22天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
1月前
|
机器学习/深度学习 人工智能 安全
北大领衔,多智能体强化学习研究登上Nature子刊
【10月更文挑战第1天】近日,北京大学领导的研究团队在《Nature》子刊上发表了一篇关于多智能体强化学习的论文,提出了一种高效且可扩展的框架,解决了大规模网络控制系统中的决策问题。该框架通过局部通信避免了集中式和独立学习的缺点,在交通、电力等领域的实验中展现了卓越性能。然而,其在更复杂系统中的效果及计算复杂度仍需进一步验证。论文链接:https://www.nature.com/articles/s42256-024-00879-7。
38 3
|
15天前
|
算法
”回溯算法“框架及练习题
”回溯算法“框架及练习题
27 0
|
2月前
|
机器学习/深度学习 算法 Python
群智能算法:深入解读人工水母算法:原理、实现与应用
近年来,受自然界生物行为启发的优化算法备受关注。人工水母算法(AJSA)模拟水母在海洋中寻找食物的行为,是一种新颖的优化技术。本文详细解读其原理及实现步骤,并提供代码示例,帮助读者理解这一算法。在多模态、非线性优化问题中,AJSA表现出色,具有广泛应用前景。
|
2月前
|
机器学习/深度学习 数据采集 人工智能
三模联盟,谷歌DeepMind缔造终身学习智能体!
【9月更文挑战第1天】在人工智能领域,谷歌DeepMind提出了一种名为Diffusion Augmented Agents(DAAG)的创新框架,结合了大型语言模型、视觉语言模型和扩散模型,旨在提升强化学习中具身智能体的样本效率和迁移学习能力。DAAG通过利用扩散模型对智能体的过去经验进行重标记,使其与目标指令保持一致,从而减少新任务所需奖励标记数据量,提高学习效率。然而,该方法仍面临计算资源需求高、输出质量受限于输入数据质量和多样性等挑战。实验结果显示,DAAG能显著提高智能体的学习效率和迁移学习能力。
50 3
|
3月前
|
机器学习/深度学习 存储 定位技术
强化学习Agent系列(一)——PyGame游戏编程,Python 贪吃蛇制作实战教学
本文是关于使用Pygame库开发Python贪吃蛇游戏的实战教学,介绍了Pygame的基本使用、窗口初始化、事件处理、键盘控制移动、以及实现游戏逻辑和对象交互的方法。
|
3月前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
49 0
下一篇
无影云桌面