2019年Reddit机器学习17个高赞项目:AI德扑大师、StyleGAN等上榜

简介: 本文是Medium网友整理的2019年Reddit机器学习板块热门高赞项目资源汇总,既有Facebook、英伟达等大厂的作品,也有网友自制的有趣小尝试,共17个项目,按热度高低排序,一起看看吧!

微信图片_20220107192135.jpg


本贴总结了2019年Reddit机器学习板块中分享的17个令人印象深刻的项目、研究、demo以及更多相关内容。其中既包括AI大厂的高光项目(GPT-2、StyleGAN等),也有小团队甚至个人做出的有趣的东西。希望小伙伴们能在这些精选资源中获得自己的收获。

 

1,少量无监督的图像到图像翻译(913⬆️)

 

“本项目的灵感来自人类自身。人可以从少量示例中获取新对象的本质,并进行概括。本项目实现了一种无监督模式的图像到图像转换算法,在测试时仅由几个示例图像加以确定,就能用于之前未见过的新目标类。

 

资源地址:https://github.com/NVlabs/FUNIT

 

2,二次元小姐姐生成器(521⬆️)


微信图片_20220107192132.jpg

 

作者提出了一种能够绘制漫画的人工神经网络。Waifu可选择喜欢的角色,并在此基础上生成喜欢的动漫。

 

资源地址:https://waifulabs.com/

 

3,最大的机器学习数据集列表(499⬆️)

 

本列表收录了一系列可以用于机器学习实验的机器学习数据集。这种资源肯定可以减少在线查找数据集所需的时间。数据集按任务类别/领域进行细分,包括:计算机视觉,自然语言处理,自动驾驶,质量检查,音频、医疗应用,还可以选择按许可类型排序。

 

资源地址:https://www.datasetlist.com/

 

4,数据集:480000条“烂番茄”影评资源库,已标记为新鲜/烂(464⬆️)

 

作者在互联网上收集大量的“烂番茄”网站的影评,这些数据在NLP任务中可能非常有用。

 

资源地址:

https://github.com/nicolas-gervais/6-607-Algorithms-for-Big-Data-Analysis/blob/master/scraping%20all%20critic%20reviews%20from%20rotten%20tomatoes

 

数据集可在Google云盘上下载

https://drive.google.com/file/d/1N8WCMci_jpDHwCVgSED-B9yts-q9_Bb5/view

 

5,使用ML创建“猫门”,当猫嘴里有猎物时会自动锁门(464⬆️)

 

这篇文章是关于使用机器学习创建的猫门。视频中的讲者创建了一个“猫门”,如果猫的嘴里有东西,就会自动锁门15分钟。这能防止猫咪将死动物带入房屋。作者将摄像头连接到猫的门上,然后应用机器学习来检查猫的嘴里是否有东西。


QQ图片20220107192255.png

查看原视频链接


视频:https://youtu.be/1A-Nf3QIJjM

 

6,基于神经点的图形(415⬆️)

 

作者提出了一种基于点的新方法来对复杂场景进行建模。使用原始点云作为场景的几何表示。然后用可学习的神经描述符扩充每个点。神经描述符对局部几何形状和外观进行编码。通过将点云进行栅格化,从新视点传递到深度渲染网络中,获得新的场景视图。

 

论文:https://arxiv.org/abs/1906.08240

 

7,AdaBound:一种基于PyTorch实现的优化器,训练速度堪比Adam,质量堪比SGD(ICLR 2019)

 

AdaBound是一种优化程序,旨在提高不可见的数据的训练速度和性能,可用PyTorch实现。

 

资源地址:https://github.com/Luolc/AdaBound

 

8,Facebook与卡内基梅隆大学联合打造德州扑克AI,在6人比赛中击败职业玩家(390⬆️)

 

“Pluribus是第一款能够在六人无限注德州扑克击败人类专家的AI,这是AI第一次在超过两个玩家的复杂游戏中击败顶级人类玩家。

 

微信图片_20220107192129.gif

Facebook博客:


https://ai.facebook.com/blog/pluribus-first-ai-to-beat-pros-in-6-player-poker/

 

9,各种ML模型的NumPy实现(388⬆️)

 

作者在项目页面上:“ numpy-ml是越来越多的专门用NumPy和Python标准库编写的机器学习模型、算法和工具的集合。”

 

资源:https://github.com/ddbourgin/numpy-ml


10、17种深度强化学习算法的PyTorch实现(388⬆️)

 

作者列出了17种深度强化学习算法的PyTorch实现。包括DQN,DQN-HER,DoubleDQN,REINFORCE,DDPG,DDPG-HER,PPO,SAC,离散SAC,A3C,A2C等。

 

资源:


https://github.com/p-christ/Deep-Reinforcement-Learning-Algorithms-with-PyTorch

 

11、100万张AI生成的假脸(373⬆️)

 

用NVIDIA的StyleGAN生成的100万张假脸。这些脸看起来与真人完全一样。

 

资源:https://archive.org/details/1mFakeFaces

 

12,教神经网络开车(358⬆️)

 

“本项目教神经网络如何驾驶汽车。这个网络很简单,具有固定数量的隐藏节点(没有NEAT),没有偏差。然而,经过短短几代的学习,它成功学会了快速安全地驾驶汽车。“该网络通过随机突变后成功学会了开赛车。”

 

视频:https://youtu.be/wL7tSgUpy8w

 

13,一个简单库,将机器学习模型转换为本地代码(Python / C / Java)(345⬆️)


m2cgen(模型2代码生成器)是一个轻量级库,可以提供简便方法,将经过训练的统计模型转换为本地代码。(支持Python,C,Java,Go,JavaScript,VisualBasic,C#)。”

 

地址:https://github.com/BayesWitnesses/m2cgen/

 

当前支持的模型如下:


微信图片_20220107192126.jpg


14,探索神经网络的损失情况(339⬆️)

 

摘自作者的帖子:“该帖子是为了在神经网络的损失平面中找到不同的模式。通常,损失最小值处就像是一个坑,其周围是随机分布的丘陵和山脉,但也存在更有意义的坑,如下图所示。

 

资源:https://github.com/universome/loss-patterns

论文:https://arxiv.org/abs/1910.03867

 

微信图片_20220107192123.jpg

“结果表明,我们几乎可以找到自己喜欢的任何损失的最小值。有趣的是,结果的横向模式对于测试集也仍然有效,也就是说,这是一种很可能在整个数据分布上都有效的属性。”

 

15,OpenAI基于GPT-2的Reddit 机器人(343⬆️)

 

本项目构建了一个由OpenAI的GPT-2驱动的Reddit机器人。相关代码可以在下面的资源中找到。

 

资源:https://github.com/shevisjohnson/gpt-2_bot

 

16,Super SloMo:一个卷积神经网络,可将任何视频转换为slomo视频(332⬆️)

 

微信图片_20220107192120.gif


论文:https://people.cs.umass.edu/~hzjiang/projects/superslomo/

代码:https://github.com/avinashpaliwal/Super-SloMo

 

17,NLP的预训练模型库:Bert,GPT,GPT-2,Transformer-XL,XLNet,XLM(306⬆️)

 

这是用于NLP的预训练Transformer模型的开源库。它具有六种架构,分别是:

 

  • Google的BERT
  • OpenAI的GPT和GPT-2
  • Google / CMU的Transformer-XL和XLNet
  • Facebook的XLM

 

该库为这些架构提供了27种预训练的模型权重。

 

资源:

https://github.com/huggingface/transformers


原文链接:

https://heartbeat.fritz.ai/best-of-machine-learning-in-2019-reddit-edition-5fbb676a808


相关文章
|
3月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
771 109
|
3月前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
本文讲解 Prompt 基本概念与 10 个优化技巧,结合学术分析 AI 应用的需求分析、设计方案,介绍 Spring AI 中 ChatClient 及 Advisors 的使用。
1409 133
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
|
3月前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段三:自定义 Advisor 与结构化输出实现以及对话记忆持久化开发
本文介绍如何在Spring AI中自定义Advisor实现日志记录、结构化输出、对话记忆持久化及多模态开发,结合阿里云灵积模型Qwen-Plus,提升AI应用的可维护性与功能性。
763 125
AI 超级智能体全栈项目阶段三:自定义 Advisor 与结构化输出实现以及对话记忆持久化开发
|
3月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1647 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
3月前
|
人工智能 测试技术 项目管理
测试不再碎片化:AI智能体平台「项目资料套件」功能上线!
在实际项目中,需求文档分散、整理费时、测试遗漏等问题常困扰测试工作。霍格沃兹推出AI智能体测试平台全新功能——项目资料套件,可将多个关联文档打包管理,并一键生成测试用例,提升测试完整性与效率。支持套件创建、文档关联、编辑删除及用例生成,适用于复杂项目、版本迭代等场景,助力实现智能化测试协作,让测试更高效、更专业。
|
4月前
|
人工智能 IDE 开发工具
通义灵码 AI IDE使用体验(3)项目优化及bug修复
本文介绍了使用通义灵码 AI IDE进行项目重构与优化的全过程,涵盖页面调整、UI更新、功能修复等内容,并展示了多次优化后的成果与仍存在的问题。
400 0
|
3月前
|
人工智能 关系型数据库 数据库
公募REITs专属AI多智能体查询分析项目
公募REITs专属AI多智能体查询分析项目。本项目是基于 OpenAI Agent 框架的多智能体项目,提供二级市场数据查询分析、招募说明书内容检索、公告信息检索、政策检索等多板块查询服务。支持图标绘制、文件生成。
公募REITs专属AI多智能体查询分析项目
|
2月前
|
人工智能 小程序 搜索推荐
【一步步开发AI运动APP】十二、自定义扩展新运动项目2
本文介绍如何基于uni-app运动识别插件实现“双手并举”自定义扩展运动,涵盖动作拆解、姿态检测规则构建及运动分析器代码实现,助力开发者打造个性化AI运动APP。
|
4月前
|
人工智能 自然语言处理 负载均衡
排期延误预警:用AI预测项目风险的3层模型搭建教程
本文介绍了如何通过 AI 智能排期将项目排期误差减少 40% 以上。文章剖析了传统排期中常见的经验依赖、资源冲突、需求变更和进度滞后四大痛点,提出 AI 排期的三步落地方法:历史数据建模、动态适配需求、资源智能匹配,并推荐适配不同团队的 AI 排期工具。强调 AI 是辅助而非替代,核心在于用数据驱动提升排期准确性,帮助团队告别“拍脑袋估期”,实现高效、可控的项目管理。
排期延误预警:用AI预测项目风险的3层模型搭建教程
|
4月前
|
人工智能 自然语言处理 JavaScript
Github又一AI黑科技项目,打造全栈架构,只需一个统一框架?
Motia 是一款现代化后端框架,融合 API 接口、后台任务、事件系统与 AI Agent,支持 JavaScript、TypeScript、Python 多语言协同开发。它提供可视化 Workbench、自动观测追踪、零配置部署等功能,帮助开发者高效构建事件驱动的工作流,显著降低部署与运维成本,提升 AI 项目落地效率。
409 0

热门文章

最新文章