10万亿!达摩院发布全球最大AI预训练模型M6

简介: 今天,阿里巴巴达摩院公布多模态大模型M6最新进展,其参数已从万亿跃迁至10万亿,成为全球最大的AI预训练模型。

今天,阿里巴巴达摩院公布多模态大模型M6最新进展,其参数已从万亿跃迁至10万亿,成为全球最大的AI预训练模型。

M6是达摩院研发的通用性人工智能大模型,拥有多模态、多任务能力,尤其擅长设计、写作、问答,在电商、制造业、文学艺术、科学研究等领域有广泛应用前景。

与传统AI相比,大模型拥有成百上千倍“神经元”数量,认知和创造能力也更胜一筹,被普遍认为是未来的“基础模型”。但大模型的算力成本相当高昂,训练1750亿参数语言大模型GPT-3所需能耗,相当于汽车行驶地月往返距离。

今年5月,通过专家并行策略及优化技术,达摩院M6团队将万亿模型能耗降低超八成、效率提升近11倍。

10月,M6再次突破业界极限,使用512 GPU在10天内即训练出具有可用水平的10万亿模型。相比去年发布的大模型GPT-3,M6实现同等参数规模,能耗仅为其1%。

image.png

将10万亿参数放进512张GPU

模型扩展到千亿及以上参数的超大规模时,将很难放在一台机器上。

为了帮助多模态预训练模型进行快速迭代训练,达摩院在阿里云PAI自研Whale框架上搭建MoE模型,并通过更细粒度的CPU offload技术,最终实现将10万亿参数放进512张GPU:

  • 自研Whale框架:自研Whale分布式深度学习训练框架,针对数据并行、模型并行、流水并行、混合并行等多种并行模型进行了统一架构设计,让用户在仅仅添加几行API调用的情况下就可以实现丰富的分布式并行策略。
  • MoE专家并行策略:在Whale架构中实现Mixture-of-Experts(MoE)专家并行策略,在扩展模型容量、提升模型效果的基础上,不显著增加运算FLOPs(每秒所执行的浮点运算次数),从而实现高效训练大规模模型的目的。
  • CPU offload创新技术:在自研的分布式框架Whale中通过更细粒度的CPU offload,解决了有限资源放下极限规模的难题,并通过灵活地选择offload的模型层,进一步地提高GPU利用率。

训练速度大幅度提升

此外,针对训练效率问题,M6团队设计了Pseudo-to-Real(共享解除)机制,即利用训练好的共享参数模型初始化大模型,让收敛效率进一步提升7倍,解决大模型训练速度慢的问题。

对比不使用该机制,预训练达到同样loss用时仅需6%;和此前万亿模型相比,训练样本量仅需40%。

image.png

作为国内首个商业化落地的多模态大模型,M6已在超40个场景中应用,日调用量上亿。

今年,大模型首次支持双11,应用包括但不限于:

  • M6在犀牛智造为品牌设计的服饰已在淘宝上线;
  • 凭借流畅的写作能力,M6正为天猫虚拟主播创作剧本;
  • 依靠多模态理解能力,M6正在增进淘宝、支付宝等平台的搜索及内容认知精度。

image.png

M6设计的飞行汽车

未来,M6将积极探索与科学应用的结合,通过AI for science让大模型的潜力充分发挥,并加强M6与国产芯片的软硬一体化研究。

达摩院智能计算实验室负责人周靖人表示:

“接下来,我们将深入研究大脑认知机理,致力于将M6的认知力提升至接近人类的水平;另一方面,还将不断增强M6在不同场景中的创造力,产生出色的应用价值。”

目前,达摩院联合阿里云已推出M6服务化平台(https://m6.aliyun.com),为大模型训练及应用提供完备工具,首次让大模型实现“开箱即用”,算法人员及普通用户均可方便地使用平台。

备注:来源| 阿里云公众号

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1天前
|
人工智能 Python
ImBD:复旦联合华南理工推出 AI 内容检测模型,快速辨别文本内容是否为 AI 生成
ImBD是一款由复旦大学、华南理工大学等机构联合推出的AI内容检测器,能够快速识别机器修订文本,适用于多种场景,显著提升检测性能。
21 8
ImBD:复旦联合华南理工推出 AI 内容检测模型,快速辨别文本内容是否为 AI 生成
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
43 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
16天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
84 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
25天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
76 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
27天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
66 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
27天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
65 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
29天前
|
存储 人工智能 PyTorch
【AI系统】模型转换流程
本文详细介绍了AI模型在不同框架间的转换方法,包括直接转换和规范式转换两种方式。直接转换涉及从源框架直接生成目标框架的模型文件,而规范式转换则通过一个中间标准格式(如ONNX)作为桥梁,实现模型的跨框架迁移。文中还提供了具体的转换流程和技术细节,以及模型转换工具的概览,帮助用户解决训练环境与部署环境不匹配的问题。
45 5
【AI系统】模型转换流程
|
29天前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型转换基本介绍
模型转换技术旨在解决深度学习模型在不同框架间的兼容性问题,通过格式转换和图优化,将训练框架生成的模型适配到推理框架中,实现高效部署。这一过程涉及模型格式转换、计算图优化、算子统一及输入输出支持等多个环节,确保模型能在特定硬件上快速、准确地运行。推理引擎作为核心组件,通过优化阶段和运行阶段,实现模型的加载、优化和高效执行。面对不同框架的模型文件格式和网络结构,推理引擎需具备高度的灵活性和兼容性,以支持多样化的应用场景。
59 4
【AI系统】模型转换基本介绍
|
7天前
|
人工智能 智能硬件
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
SPAR 是智谱团队推出的自我博弈训练框架,旨在提升大型语言模型在指令遵循方面的能力,通过生成者和完善者的互动以及树搜索技术优化模型响应。
21 0
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
|
28天前
|
人工智能 PyTorch 测试技术
【AI系统】并行训练基本介绍
分布式训练通过将任务分配至多个节点,显著提升模型训练效率与精度。本文聚焦PyTorch2.0中的分布式训练技术,涵盖数据并行、模型并行及混合并行等策略,以及DDP、RPC等核心组件的应用,旨在帮助开发者针对不同场景选择最合适的训练方式,实现高效的大模型训练。
62 8