Text classification with TensorFlow Hub: Movie reviews

简介: This notebook classifies movie reviews as positive or negative using the text of the review. This is an example of binary—or two-class—classification, an important and widely applicable kind of machine learning problem.

This notebook classifies movie reviews as positive or negative using the text of the review. This is an example of binary—or two-class—classification, an important and widely applicable kind of machine learning problem.

The tutorial demonstrates the basic application of transfer learning with TensorFlow Hub and Keras.

It uses the IMDB dataset that contains the text of 50,000 movie reviews from the Internet Movie Database. These are split into 25,000 reviews for training and 25,000 reviews for testing. The training and testing sets are balanced, meaning they contain an equal number of positive and negative reviews.

This notebook uses tf.keras, a high-level API to build and train models in TensorFlow, and tensorflow_hub, a library for loading trained models from TFHub in a single line of code. For a more advanced text classification tutorial using tf.keras, see the MLCC Text Classification Guide.

import os
import numpy as np

import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_datasets as tfds

print("Version: ", tf.__version__)
print("Eager mode: ", tf.executing_eagerly())
print("Hub version: ", hub.__version__)
print("GPU is", "available" if tf.config.list_physical_devices("GPU") else "NOT AVAILABLE")

Download the IMDB dataset

The IMDB dataset is available on imdb reviews or on TensorFlow datasets. The following code downloads the IMDB dataset to your machine (or the colab runtime):

# Split the training set into 60% and 40% to end up with 15,000 examples
# for training, 10,000 examples for validation and 25,000 examples for testing.
train_data, validation_data, test_data = tfds.load(
    name="imdb_reviews", 
    split=('train[:60%]', 'train[60%:]', 'test'),
    as_supervised=True)

Explore the data

Let's take a moment to understand the format of the data. Each example is a sentence representing the movie review and a corresponding label. The sentence is not preprocessed in any way. The label is an integer value of either 0 or 1, where 0 is a negative review, and 1 is a positive review.
Let's print first 10 examples

train_examples_batch, train_labels_batch = next(iter(train_data.batch(10)))
train_examples_batch

Build the model

The neural network is created by stacking layers—this requires three main architectural decisions:

  • How to represent the text?
  • How many layers to use in the model?
  • How many hidden units to use for each layer?

In this example, the input data consists of sentences. The labels to predict are either 0 or 1.

One way to represent the text is to convert sentences into embeddings vectors. Use a pre-trained text embedding as the first layer, which will have three advantages:

  • You don't have to worry about text preprocessing,
  • Benefit from transfer learning,
  • the embedding has a fixed size, so it's simpler to process.

For this example you use a pre-trained text embedding model from TensorFlow Hub called google/nnlm-en-dim50/2.

There are many other pre-trained text embeddings from TFHub that can be used in this tutorial:

And many more! Find more text embedding models on TFHub.

Let's first create a Keras layer that uses a TensorFlow Hub model to embed the sentences, and try it out on a couple of input examples. Note that no matter the length of the input text, the output shape of the embeddings is: (num_examples, embedding_dimension).

embedding = "https://tfhub.dev/google/nnlm-en-dim50/2"
hub_layer = hub.KerasLayer(embedding, input_shape=[], 
                           dtype=tf.string, trainable=True)
hub_layer(train_examples_batch[:3])

Let's now build the full model:

model = tf.keras.Sequential()
model.add(hub_layer)
model.add(tf.keras.layers.Dense(16, activation='relu'))
model.add(tf.keras.layers.Dense(1))

model.summary()

The layers are stacked sequentially to build the classifier:

  1. The first layer is a TensorFlow Hub layer. This layer uses a pre-trained Saved Model to map a sentence into its embedding vector. The pre-trained text embedding model that you are using (google/nnlm-en-dim50/2) splits the sentence into tokens, embeds each token and then combines the embedding. The resulting dimensions are: (num_examples, embedding_dimension). For this NNLM model, the embedding_dimension is 50.
  2. This fixed-length output vector is piped through a fully-connected (Dense) layer with 16 hidden units.
  3. The last layer is densely connected with a single output node.

Let's compile the model.

Loss function and optimizer

A model needs a loss function and an optimizer for training. Since this is a binary classification problem and the model outputs logits (a single-unit layer with a linear activation), you'll use the binary_crossentropy loss function.

This isn't the only choice for a loss function, you could, for instance, choose mean_squared_error. But, generally, binary_crossentropy is better for dealing with probabilities—it measures the "distance" between probability distributions, or in our case, between the ground-truth distribution and the predictions.

Later, when you are exploring regression problems (say, to predict the price of a house), you'll see how to use another loss function called mean squared error.

Now, configure the model to use an optimizer and a loss function:

model.compile(optimizer='adam',
              loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
              metrics=['accuracy'])

Train the model

Train the model for 10 epochs in mini-batches of 512 samples. This is 10 iterations over all samples in the x_train and y_train tensors. While training, monitor the model's loss and accuracy on the 10,000 samples from the validation set:

history = model.fit(train_data.shuffle(10000).batch(512),
                    epochs=10,
                    validation_data=validation_data.batch(512),
                    verbose=1)

Evaluate the model

And let's see how the model performs. Two values will be returned. Loss (a number which represents our error, lower values are better), and accuracy.

results = model.evaluate(test_data.batch(512), verbose=2)

for name, value in zip(model.metrics_names, results):
  print("%s: %.3f" % (name, value))
目录
相关文章
|
机器学习/深度学习 大数据 TensorFlow
TensorFlow Hub介绍:TensorFlow中可重用的机器学习模块库
本文对TensorFlow Hub库的介绍,并举例说明其用法。
7542 0
|
16天前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
39 5
|
25天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
75 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
25天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
69 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
25天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
73 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
17天前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
53 0
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
79 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
114 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
4月前
|
机器学习/深度学习 算法 TensorFlow
深入探索强化学习与深度学习的融合:使用TensorFlow框架实现深度Q网络算法及高效调试技巧
【8月更文挑战第31天】强化学习是机器学习的重要分支,尤其在深度学习的推动下,能够解决更为复杂的问题。深度Q网络(DQN)结合了深度学习与强化学习的优势,通过神经网络逼近动作价值函数,在多种任务中表现出色。本文探讨了使用TensorFlow实现DQN算法的方法及其调试技巧。DQN通过神经网络学习不同状态下采取动作的预期回报Q(s,a),处理高维状态空间。
63 1
|
3月前
|
机器学习/深度学习 数据挖掘 TensorFlow
解锁Python数据分析新技能,TensorFlow&PyTorch双引擎驱动深度学习实战盛宴
在数据驱动时代,Python凭借简洁的语法和强大的库支持,成为数据分析与机器学习的首选语言。Pandas和NumPy是Python数据分析的基础,前者提供高效的数据处理工具,后者则支持科学计算。TensorFlow与PyTorch作为深度学习领域的两大框架,助力数据科学家构建复杂神经网络,挖掘数据深层价值。通过Python打下的坚实基础,结合TensorFlow和PyTorch的强大功能,我们能在数据科学领域探索无限可能,解决复杂问题并推动科研进步。
68 0