Kubeflow实战系列:利用TensorFlow Serving进行模型预测

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
简介: 本系列将介绍如何在阿里云容器服务上运行Kubeflow, 本文介绍如何使用`TensorFlow Serving`加载训练模型并且进行模型预测。

介绍

本系列将介绍如何在阿里云容器服务上运行Kubeflow, 本文介绍如何使用TensorFlow Serving加载训练模型并且进行模型预测。

TensorFlow Serving简介

TensorFlow Serving是Google开源的一个灵活的、高性能的机器学习模型服务系统,能够简化并加速从模型到生产应用的过程。它除了原生支持TensorFlow模型,还可以扩展支持其他类型的机器学习模型。

tf_serving

在前面的文章中,已经介绍了如何进行单机和分布式的模型训练,并且可以将训练的导出模型放置到分布式存储上。在本文中,会介绍模型如何被发布到TensorFlow Serving系统服务器端。并通过gRPC客户端提交请求,由服务端返回预测结果。

在分布式存储查看训练的模型

在前一篇文章中,我们已经将训练的模型导出到NAS上,可以先查看一下导出的模型。在serving的文件夹指定了模型的,即mnist名称;而mnist的下一层是模型的版本。

mkdir -p /nfs
mount -t nfs -o vers=4.0 0fc844b526-rqx39.cn-hangzhou.nas.aliyuncs.com:/ /nfs
cd /nfs
tree serving

serving
└── mnist
    └── 1
        ├── saved_model.pb
        └── variables
            ├── variables.data-00000-of-00001
            └── variables.index

在模型导出的章节中,已经在这个NAS存储上创建了对应的pv: tf-serving-pv和pvc: tf-serving-pvc, 而TensorFlow Serving将从pvc中加载模型。

kubectl get pv tf-serving-pv

NAME            CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS    CLAIM                    STORAGECLASS   REASON    AGE
tf-serving-pv   10Gi       RWX            Retain           Bound     default/tf-serving-pvc   nas                      2d

kubectl get pvc tf-serving-pvc

NAME             STATUS    VOLUME          CAPACITY   ACCESS MODES   STORAGECLASS   AGE
tf-serving-pvc   Bound     tf-serving-pv   10Gi       RWX            nas            2d

利用Kubeflow启动TensorFlow Serving

# 创建TensorFlow Serving的namespace
export NAMESPACE=default

# 指定Kubeflow的版本
VERSION=v0.2.0-rc.0
APP_NAME=tf-serving

# 初始化Kubeflow应用,并且将其namespace设置为default环境
ks init ${APP_NAME} --api-spec=version:v1.9.3
cd ${APP_NAME}
ks env add ack
ks env set ack --namespace ${NAMESPACE}

# 安装 Kubeflow 模块
ks registry add kubeflow github.com/kubeflow/kubeflow/tree/${VERSION}/kubeflow
ks pkg install kubeflow/tf-serving@${VERSION}

# 指定配置TensorFlow Serving所需环境变量
MODEL_COMPONENT=mnist-serving
MODEL_NAME=mnist
MODEL_PATH=/mnt/mnist
MODEL_STORAGE_TYPE=nfs
SERVING_PVC_NAME=tf-serving-pvc
MODEL_SERVER_IMAGE=registry.aliyuncs.com/kubeflow-images-public/tensorflow-serving-1.7:v20180604-0da89b8a


# 创建TensorFlow Serving的模板
ks generate tf-serving ${MODEL_COMPONENT} --name=${MODEL_NAME}
ks param set ${MODEL_COMPONENT} modelPath ${MODEL_PATH}
ks param set ${MODEL_COMPONENT} modelStorageType ${MODEL_STORAGE_TYPE}
ks param set ${MODEL_COMPONENT} nfsPVC ${SERVING_PVC_NAME}
ks param set ${MODEL_COMPONENT} modelServerImage $MODEL_SERVER_IMAGE 

# 设置tf-serving
ks param set ${MODEL_COMPONENT} cloud ack

# 如果需要暴露对外部系统的服务
ks param set ${MODEL_COMPONENT} serviceType LoadBalancer

# 如果使用GPU, 请使用以下配置
NUMGPUS=1
ks param set ${MODEL_COMPONENT} numGpus ${NUMGPUS}
MODEL_GPU_SERVER_IMAGE=registry.aliyuncs.com/kubeflow-images-public/tensorflow-serving-1.6gpu:v20180604-0da89b8a
ks param set ${MODEL_COMPONENT} modelServerImage $MODEL_SERVER_IMAGE

ks apply ack -c mnist-serving

部署完成后可以通过kubectl get deploy查询到TensorFlow Serving运行状态

# kubectl get deploy -lapp=$MODEL_NAME
NAME       DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
mnist-v1   1         1         1            1           4m

查看TensorFlow Serving运行日志,发现模型已经加载

2018-06-19 06:50:19.185785: I external/org_tensorflow/tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2018-06-19 06:50:19.202907: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:161] Restoring SavedModel bundle.
2018-06-19 06:50:19.418625: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:196] Running LegacyInitOp on SavedModel bundle.
2018-06-19 06:50:19.425357: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:291] SavedModel load for tags { serve }; Status: success. Took 550707 microseconds.
2018-06-19 06:50:19.430435: I tensorflow_serving/core/loader_harness.cc:86] Successfully loaded servable version {name: mnist version: 1}

以及对外的暴露的服务ip和端口

kubectl get svc -lapp=$MODEL_NAME
NAME      TYPE           CLUSTER-IP     EXTERNAL-IP       PORT(S)                         AGE
mnist     LoadBalancer   172.19.4.241   xx.xx.xx.xx   9000:32697/TCP,8000:32166/TCP   7m

这里可以看到gRPC对外服务ip为xx.xx.xx.xx,对外服务的端口为9000

使用gRPC客户端访问TensorFlow Serving

通过kubectl run运行gRPC客户端, 并且点击回车,登录到Pod里

kubectl run -i --tty mnist-client --image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/tf-mnist-client-demo --restart=Never --command -- /bin/bash
If you don't see a command prompt, try pressing enter.

运行客户端python代码:

# export TF_MNIST_IMAGE_PATH=1.png
# export TF_MODEL_SERVER_HOST=172.19.4.241
# python mnist_client.py
/usr/local/lib/python2.7/dist-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
  from ._conv import register_converters as _register_converters
outputs {
  key: "scores"
  value {
    dtype: DT_FLOAT
    tensor_shape {
      dim {
        size: 1
      }
      dim {
        size: 10
      }
    }
    float_val: 1.0
    float_val: 0.0
    float_val: 9.85347854001e-34
    float_val: 1.00954509814e-35
    float_val: 0.0
    float_val: 0.0
    float_val: 1.5053762612e-14
    float_val: 0.0
    float_val: 5.21842267799e-22
    float_val: 0.0
  }
}


............................
............................
............................
............................
.............@@.............
.............@@@............
.............@@@............
.............@@@............
.............@@@............
.............@@@............
.............@@@............
.............@@@............
.............@@@............
.............@@@............
.............@@@@...........
.............@@@@...........
..............@@@...........
..............@@@...........
..............@@@...........
..............@@@...........
..............@@@...........
..............@@@...........
..............@@@...........
..............@@@...........
............................
............................
............................
............................
Your model says the above number is... 1!

这样我们训练导出的模型,就可以直接通过gRPC的客户端访问了,从而实现在线预测。结合前面的文章,我们已经介绍了从深度学习的模型训练,模型导出到模型部署上线的全路径通路。

删除TensorFlow Serving

ks delete ack -c mnist-serving

总结

这个例子介绍了如何通过Kubeflow部署TensorFlow Serving, 并且加载阿里云NAS上存储的模型,并且提供模型预测服务。

Kubeflow部署机器学习应用非常简单,但是只有应用层的简便是不够的;云端基础设施的自动化集成也是非常重要的,比如GPU/NAS/OSS以及负载均衡的无缝调用,而这方面使用阿里云Kubernetes容器服务可以大幅度降低数据科学家的模型交付难度。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
19天前
|
API UED 开发者
如何在Uno Platform中轻松实现流畅动画效果——从基础到优化,全方位打造用户友好的动态交互体验!
【8月更文挑战第31天】在开发跨平台应用时,确保用户界面流畅且具吸引力至关重要。Uno Platform 作为多端统一的开发框架,不仅支持跨系统应用开发,还能通过优化实现流畅动画,增强用户体验。本文探讨了Uno Platform中实现流畅动画的多个方面,包括动画基础、性能优化、实践技巧及问题排查,帮助开发者掌握具体优化策略,提升应用质量与用户满意度。通过合理利用故事板、减少布局复杂性、使用硬件加速等技术,结合异步方法与预设缓存技巧,开发者能够创建美观且流畅的动画效果。
43 0
|
19天前
|
C# 开发者 前端开发
揭秘混合开发新趋势:Uno Platform携手Blazor,教你一步到位实现跨平台应用,代码复用不再是梦!
【8月更文挑战第31天】随着前端技术的发展,混合开发日益受到开发者青睐。本文详述了如何结合.NET生态下的两大框架——Uno Platform与Blazor,进行高效混合开发。Uno Platform基于WebAssembly和WebGL技术,支持跨平台应用构建;Blazor则让C#成为可能的前端开发语言,实现了客户端与服务器端逻辑共享。二者结合不仅提升了代码复用率与跨平台能力,还简化了项目维护并增强了Web应用性能。文中提供了从环境搭建到示例代码的具体步骤,并展示了如何创建一个简单的计数器应用,帮助读者快速上手混合开发。
30 0
|
19天前
|
开发者 算法 虚拟化
惊爆!Uno Platform 调试与性能分析终极攻略,从工具运用到代码优化,带你攻克开发难题成就完美应用
【8月更文挑战第31天】在 Uno Platform 中,调试可通过 Visual Studio 设置断点和逐步执行代码实现,同时浏览器开发者工具有助于 Web 版本调试。性能分析则利用 Visual Studio 的性能分析器检查 CPU 和内存使用情况,还可通过记录时间戳进行简单分析。优化性能涉及代码逻辑优化、资源管理和用户界面简化,综合利用平台提供的工具和技术,确保应用高效稳定运行。
31 0
|
19天前
|
前端开发 开发者 设计模式
揭秘Uno Platform状态管理之道:INotifyPropertyChanged、依赖注入、MVVM大对决,帮你找到最佳策略!
【8月更文挑战第31天】本文对比分析了 Uno Platform 中的关键状态管理策略,包括内置的 INotifyPropertyChanged、依赖注入及 MVVM 框架。INotifyPropertyChanged 方案简单易用,适合小型项目;依赖注入则更灵活,支持状态共享与持久化,适用于复杂场景;MVVM 框架通过分离视图、视图模型和模型,使状态管理更清晰,适合大型项目。开发者可根据项目需求和技术栈选择合适的状态管理方案,以实现高效管理。
27 0
|
3月前
|
机器学习/深度学习 人工智能 算法
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物('蛤蜊', '珊瑚', '螃蟹', '海豚', '鳗鱼', '水母', '龙虾', '海蛞蝓', '章鱼', '水獭', '企鹅', '河豚', '魔鬼鱼', '海胆', '海马', '海豹', '鲨鱼', '虾', '鱿鱼', '海星', '海龟', '鲸鱼')数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。
158 7
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
|
3月前
|
机器学习/深度学习 人工智能 算法
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
乐器识别系统。使用Python为主要编程语言,基于人工智能框架库TensorFlow搭建ResNet50卷积神经网络算法,通过对30种乐器('迪吉里杜管', '铃鼓', '木琴', '手风琴', '阿尔卑斯号角', '风笛', '班卓琴', '邦戈鼓', '卡萨巴', '响板', '单簧管', '古钢琴', '手风琴(六角形)', '鼓', '扬琴', '长笛', '刮瓜', '吉他', '口琴', '竖琴', '沙槌', '陶笛', '钢琴', '萨克斯管', '锡塔尔琴', '钢鼓', '长号', '小号', '大号', '小提琴')的图像数据集进行训练,得到一个训练精度较高的模型,并将其
53 0
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
|
9天前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
22 0
|
19天前
|
持续交付 测试技术 jenkins
JSF 邂逅持续集成,紧跟技术热点潮流,开启高效开发之旅,引发开发者强烈情感共鸣
【8月更文挑战第31天】在快速发展的软件开发领域,JavaServer Faces(JSF)这一强大的Java Web应用框架与持续集成(CI)结合,可显著提升开发效率及软件质量。持续集成通过频繁的代码集成及自动化构建测试,实现快速反馈、高质量代码、加强团队协作及简化部署流程。以Jenkins为例,配合Maven或Gradle,可轻松搭建JSF项目的CI环境,通过JUnit和Selenium编写自动化测试,确保每次构建的稳定性和正确性。
42 0
|
19天前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
33 0
|
19天前
|
UED 开发者
哇塞!Uno Platform 数据绑定超全技巧大揭秘!从基础绑定到高级转换,优化性能让你的开发如虎添翼
【8月更文挑战第31天】在开发过程中,数据绑定是连接数据模型与用户界面的关键环节,可实现数据自动更新。Uno Platform 提供了简洁高效的数据绑定方式,使属性变化时 UI 自动同步更新。通过示例展示了基本绑定方法及使用 `Converter` 转换数据的高级技巧,如将年龄转换为格式化字符串。此外,还可利用 `BindingMode.OneTime` 提升性能。掌握这些技巧能显著提高开发效率并优化用户体验。
38 0

热门文章

最新文章