开放计算架构:蚂蚁金服是如何用一套架构容纳所有计算的?

本文涉及的产品
数据安全中心,免费版
简介: 过去十几年,计算技术不断演进,从大规模数据仓库批计算,到实时计算和流计算,再到交互式分析,一方面能解决一部分问题,另一方面给我们带来了新的挑战。

蚂蚁金服在过去十五年重塑支付改变生活,为全球超过十二亿人提供服务,这些背后离不开技术的支撑。在 2019 杭州云栖大会上,蚂蚁金服将十五年来的技术沉淀,以及面向未来的金融技术创新和参会者分享。我们将其中的优秀演讲整理成文并将陆续发布在“ 蚂蚁金服科技”公众号上,本文为其中一篇。

十几年来,蚂蚁金服一直在解决用技术重塑金融服务的问题,在解决这个问题的过程中涉及到两个方向的技术领域,第一就是解决怎么把钱从一个帐户移到另一个帐户,这个过程中出现海量、安全、可用性问题怎么解决,我们的答案就是多地容灾、高可用的分布式架构;第二,新的数字金融时代到来,如何更多更好的利用数据驱动业务发展,也就是数据智能技术。本文将会分享蚂蚁在数据智能方面的一些进展,以及我们的思考。

首先,我们看一下金融数据智能有哪些需求,和传统的大数据有什么不一样的地方:

实时性要求高,实时数据以两倍以上的速度增长,在线决策越来越多,不再是把数据离线做决策再部署到线上;
计算场景复杂多样,以前可能是一个简单的聚合,逐渐进化到用规则做决策,基于图、基于机器学习等决策,整个计算的形式越来越多样化;
数据链路长,研发调试效率低,当你要做全链路数据研发的时候,从头到尾会经历十几个系统,对整体的数据研发提出了很大的挑战;
计算及存储高可用,包括跨城市的容灾,高可靠的计算服务;
数据安全、监管合规、风险防控,需要做严格的数据安全和隐私保护,特别在监管层面要合规。

过去十几年,计算技术不断演进,从大规模数据仓库批计算,到实时计算和流计算,再到交互式分析,一方面能解决一部分问题,另一方面给我们带来了新的挑战。比如,多种计算模式带来多次研发的效率问题,多套系统带来多样存储需求的成本问题,以及不同容灾和数据安全要求带来的复杂度问题等。

为了解决计算多样性带来的问题,我们需要一个更为开放的计算架构。

蚂蚁金服开放计算架构

做一套系统解决一切问题是技术人员很自然的想法,但难点是怎么定义这个系统的边界。我们认为,计算和业务本身是紧密连接的,业务的需求变化很有可能需要探索越来越多的计算模式。所以我们的实践是这样的开放计算架构,它在不同层面上做了统一,以兼容不同的计算模式。

首先是统一存储层,将各个存储系统打通进行数据共享,这样一来就可以根据计算需求做定制化的优化,内部数据自动回流。

第二是统一数据安全规范,在统一存储上实现统一元数据管理及接入,并且数据血缘互通,统一鉴权及数据访问权限体系,统一数据安全等级和隐私保护体系。

第三是统一编程模型,基于标准SQL和扩展,做业务研发的时候面对的是下层抽象出来的数据,真正做面向数据的编程,不需要关注用交互式分析还是其它计算模式,也不需要关注数据是如何存储的。这样做数据研发以及写业务逻辑的时候可以提升效率。这方面我们做了很多的探索,目标就是当你在做SQL研发的时候可以降低两个数量级,原来可能要写几万行代码,现在只写几百行。

image.png

经过这些统一我们形成了如上的架构,这个架构可以根据新的技术进一步扩展。

开放计算架构下的AI引擎

AI计算是开放架构下重要的能力,我们需要打造更加灵活智能的AI引擎。

image.png

目前绝大多数公司的人工智能系统,会遵循这样一个架构:有一个数据仓库或集群进行数据清洗和预处理,然后取出一个表,和数据标注一起在一个模型平台上进行训练,训练出来的模型最后再部署到线上去进行预测。这整个流程经过了多个系统,所以这个数据事实上可能会有多份存储,加上模型的传输也会花费比较多的时间,你很难做到真正的实时性,这里面用户也往往需要研发多个平台和组件才能满足需求。

image.png

开放架构下可以插入AI引擎,我们在SQL层和深度学习引擎都做了一些工作。SQLFLow相当于用SQL描述你对应用的需求,底层会直接针对SQL产生出机器学习的任务来训练模型。

ElasticDL我们刚刚在9月11日宣布开源,它是基于TensorFlow的一个弹性调度的AI引擎。当你资源紧张或者发生错误时,仍然可以进行高效的AI训练。同时它让AI的训练变得更加简单,可以在命令行直接训练Keras模型。通过这些工具,我们希望让AI的训练和整个使用过程更加的简洁。

关于SQLFlow和ElasticDL想了解更多可以可以查看他们的开源主页 sqlflow.org 和 elasticdl.org

在开放性的架构下,事实上也不需要做引擎的改变,一般的模式是,当有一个新的引擎或工具可以直接拿过来使用,使用完了觉得需要优化,就在上面迭代提升。

开放计算架构下的金融级图计算

在金融领域里,金融场景大量依赖于图数据,我们需要强大的图计算能力,那么开放计算架构如何支持图计算呢?

image.png

上图是蚂蚁整个图计算发展的历程,四年以前我们从做图数据产品开始,到做离线全图的迭代计算引擎,然后做流图融合的引擎,然后是高速的图缓存,以及到现在把图相关的所有东西聚合起来,做成一站式的图平台。

image.png

首先第一个是金融级分布式图数据库GeaBase,解决的问题是,当你有海量的图数据,数据之间有关系的时候,提供强一致、高容量的存储。它和现有的一些图数据库最大的区别是,很多现有的图数据库都是把所有数据收起来做一个计算,这是最简单的做法,但会导致性能瓶颈,我们做的是把计算下发到worker以实现分布式的高性能。同时GeaBase可以根据用户的业务需求去选择需要什么样的一致性。

image.png

然后是大规模全图计算,采用了自适应的分区策略来降低资源门槛,因为很多图计算里面都是需要把全图加载到内存里面,然后进行迭代,这种情况一些超大图对内存的需求量非常高,所以我们做了一些优化希望降低资源的使用率。同时我们也能够更灵活的支持更多的图算法,以及能够做非常大规模高效图关系的挖掘,这个也已经在内部的风控场景落地。

然后还有在线流图融合,蚂蚁研发了业界首个实时多模融合计算框架。起因是我们发现,在业务中有很多时候有数据进来,同时要进行很多的图计算,计算完结果以后再输出,这在业界也是比较前沿的探索课题,我们做到了在海量大图上同时能够做很多层的计算。

image.png

基于对图计算的强烈需求,我们做了一个高性能的图缓存,里面的关键技术是基于无冲突的Hash函数,以及对于图数据结构的压缩。大家可以看下图中的效果,我们最高可以压缩到原始数据的五分之一,性能为业界优秀同类产品的2-5倍。

image.png

当有了这么多系统后,我们遇到的问题是,在一个场景下需要针对多个引擎做研发,所以我们开发了一站式平台AntGraph,为从开发调试到生产上线整个流程提供便利。我们把所有的访问统一到一个Graph SQL下面,关于这个我们也在进行一些额外的探索,因为到底SQL是不是最适合于Graph语言是有争议的,但我们可以用SQL部分描述性的功能再加上一些扩展,可以完成我们想要的功能。

image.png

经过前面针对图计算能力的研发后,我们拥有多个图计算引擎,同时为了优化客户体验,在上层也用SQL语言进行统一。这样我们的开放计算架构就拥有了强大的图计算能力。

开放计算架构下的融合计算

经过前面的研发,开放计算架构里有了大量的计算引擎,虽然在上层进行了统一,但这种情况往往不是最优的选择。当我们对已有的计算模式已经有把握,了解的比较清楚的时候,有没有可能对它们进行更多的优化?很多情况下用户需要的是要多种模式融合起来的计算,有时候需要流加上图,有时候需要流加机器学习加其他的东西,我们给出的答案就是融合计算引擎。

image.png

融合计算在底层基于Ray,Ray是蚂蚁金服联合 UC Berkeley 大学推进的新一代计算引擎,融合计算通过一套引擎解决复杂场景问题,通过动态计算及状态共享提高效率,实现研发、运行时、容灾一体化。

融合计算已经在蚂蚁若干场景中落地,包括:

  • 动态图推导,流+图计算,性能上可以1秒内完成6层迭代查询,用于实时反套现、欺诈识别;
  • 金融在线决策,流+分布式查询+在线服务,性能上数据生产到分布式查询一秒内,用于金融网络监控、机构渠道路由等;
  • 在线机器学习,流+分布式机器学习,性能上实现秒级数据样本到模型更新,用于智能营销、实时推荐、流控等。

image.png

融合计算并不会取代其它的引擎,而是作为补充,用于部分合适的场景。通过上面的分享可以看到,这套架构可以容纳各种不同种类和作用的计算引擎,这也是开放二字的意义,如果未来有一个新的引擎,或者业务对数据有新的需求,完全可以插入自己的引擎直接使用。

image.png

最后总结一下蚂蚁金服对数据智能未来的整体愿景,我们希望未来的存储是可以打通的,所有的引擎是可以插拔、融合的,上层希望有标准的数据访问模式,所有的这一套组合在一起,我们把它叫做Big Data Base。我们认为,大数据经过过去十多年的发展,一定会进化到下一个阶段,对数据的增删改查会像数据库一样简单。

另外一个层面,Big Data Base还意味着可以在一个体系中很方便的使用包含机器学习、图计算以及未来各种各样的计算引擎。这套开放计算架构中的很多组件我们已经开源,这个大的体系我们还在研发过程中,未来会和大家分享更多的细节,希望大家能够一起参与进来,把金融的数据智能领域推到下一个阶段。


OceanBase 登顶TPC-C测试榜,实现中国数据库零的突破,想要了解背后的技术细节?欢迎下载电子书《OceanBase TPC-C测试技术解析》,长按识别以下二维码,关注“蚂蚁金服科技”官方公众号,并在对话框内回复“TPCC”,即可免费下载。

相关文章
|
3天前
|
存储 自然语言处理 文字识别
开放应用架构,建设全新可精细化运营的百炼
本次分享的主题是开放应用架构,建设全新可精细化运营的百炼。由阿里云智能集团专家团队介绍在过去一年中,百炼在RAG(检索增强生成)技术的应用落地所遇到的挑战及解决方案。
23 11
|
12天前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器ECS架构区别及选择参考:X86计算、ARM计算等架构介绍
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、高性能计算可选,有的用户并不清楚他们之间有何区别,本文主要简单介绍下这些架构各自的主要性能及适用场景,以便大家了解不同类型的架构有何不同,主要特点及适用场景有哪些。
|
17天前
|
存储 人工智能 运维
面向AI的服务器计算软硬件架构实践和创新
阿里云在新一代通用计算服务器设计中,针对处理器核心数迅速增长(2024年超100核)、超多核心带来的业务和硬件挑战、网络IO与CPU性能增速不匹配、服务器物理机型复杂等问题,推出了磐久F系列通用计算服务器。该系列服务器采用单路设计减少爆炸半径,优化散热支持600瓦TDP,并实现CIPU节点比例灵活配比及部件模块化可插拔设计,提升运维效率和客户响应速度。此外,还介绍了面向AI的服务器架构挑战与软硬件结合创新,包括内存墙问题、板级工程能力挑战以及AI Infra 2.0服务器的开放架构特点。最后,探讨了大模型高效推理中的显存优化和量化压缩技术,旨在降低部署成本并提高系统效率。
|
1月前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
62 4
【AI系统】计算图优化架构
|
1月前
|
机器学习/深度学习 人工智能 API
【AI系统】昇腾异构计算架构 CANN
本文介绍了昇腾 AI 异构计算架构 CANN,涵盖硬件层面的达·芬奇架构和软件层面的全栈支持,旨在提供高性能神经网络计算所需的硬件基础和软件环境。通过多层级架构,CANN 实现了高效的 AI 应用开发与性能优化,支持多种主流 AI 框架,并提供丰富的开发工具和接口,助力开发者快速构建和优化神经网络模型。
55 1
|
2月前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器架构有啥区别?X86计算、Arm、GPU异构、裸金属和高性能计算对比
阿里云ECS涵盖x86、ARM、GPU/FPGA/ASIC、弹性裸金属及高性能计算等多种架构。x86架构采用Intel/AMD处理器,适用于广泛企业级应用;ARM架构低功耗,适合容器与微服务;GPU/FPGA/ASIC专为AI、图形处理设计;弹性裸金属提供物理机性能;高性能计算则针对大规模并行计算优化。
106 7
|
2月前
|
存储 自然语言处理 文字识别
开放应用架构,建设全新可精细化运营的百炼
本文介绍了阿里云智能集团在百炼大模型应用中的技术实践和运营经验。主要内容包括:1) RAG技术的背景及其在落地时面临的挑战;2) 多模态多语言RAG技术的研发与应用;3) 多模态多元embedding和rank模型的训练;4) 基于千问大模型的embedding和rank模型;5) 开源社区推出的GT千问系列模型;6) 模型应用中的可运营实践;7) AI运营的具体方法论和实践经验。通过这些内容,展示了如何解决实际应用中的复杂需求,提升系统的准确性和用户体验。
|
2月前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
110 1
|
2月前
|
监控 API 调度
开放源代码平台Flynn的架构与实现原理
【10月更文挑战第21天】应用程序的生命周期涉及从开发到运行的复杂过程,包括源代码、构建、部署和运行阶段。
|
2月前
|
运维 监控 Serverless
Serverless架构在图像处理等计算密集型应用中展现了显著的优势
Serverless架构在图像处理等计算密集型应用中展现了显著的优势
45 1

热门文章

最新文章