人脸识别技术获权威评测肯定!云知声 AI 全栈能力再下一城

简介: 在国际权威的人脸识别标准评测数据库 LFW 和 MegaFace 上,云知声的算法系统分别取得 99.80%和 98.47% 的佳绩,系统性能即位居业内前列。

AI 科技评论按:近日,在国际权威的人脸识别标准评测数据库 LFW 和 MegaFace 上,云知声团队研发的人脸识别 UFaceID 算法系统,在上述两项标准评测中,性能分别达到 99.80% 和 98.47%。该成绩除了反映云知声现阶段的计算机视觉能力,亦可视作云知声在多模态 AI 能力建设方面的决心。

TB11b8atpzqK1RjSZFvXXcB7VXa.jpg

LFW 是人脸识别研究领域最重要的人脸图像测评集合之一, MegaFace 为目前最具权威的、热门的评价人脸识别性能的数据集之一。简单来说,LFW 针对早期人脸验证任务提出评测方法与指标,结果具有借鉴意义;而 MegaFace 提出的关于百万级别的 1:N 人脸辨识任务的评测指标,难度更大,是目前学术界测评的新主流。

据雷锋网(公众号:雷锋网) AI 科技评论了解,云知声为首次参与内部测评,之所以能获得评测数据集的肯定,与云知声分布式机器学习智能计算平台——Atlas 脱不开关系。

TB189c_thTpK1RjSZFGXXcHqFXa.png

Atlas 机器学习智能计算平台以 GPU 和 CPU 为计算集群的基础硬件资源,针对智能计算的需求和任务特点,使用云知声内部改进的 Kubernetes 作为资源管理和调度系统,通过计算任务容器化和图形化的任务交互,最大化的简化算法研究人员提交计算任务的复杂度,实现计算任务的全流程管理和一键式分布式运行。同时,针对智能计算对海量真实应用场景数据的访问特点,Atlas 智能计算平台构建具备 PB 量级的高 IO 和高可靠的分布式存储系统。

此外,在 Atlas 智能计算平台基础上,为了更加高效地实现算法模块共享和高效运行,云知声研发了 UniFlow 计算框架。支持 DNN、CNN、RNN/LSTM、seq2seq 等丰富的机器学习和深度学习算法模块,支持 TensorFlow 、 PyTorch 、Caffe 等主流计算框架以及用户自定义算法,同时,优化分布式任务的计算和通信逻辑,计算效率提升 50% 以上。在下一代的 UniFlow 中,还将集成自动调参和模型压缩模块,实现全流程托管式自动调参,能够为不同场景下的 AI 数据处理、算法演进提供高效的计算支撑。

云知声 CEO 黄伟指出,「在 LFW 和 MegaFace 评测数据集上的初露锋芒,检验了云知声在计算机视觉研究方面的新进展,也更加坚定了我们发展多模态 AI 能力的信心。但是,从另一方面来看,技术的最终目的是落地,由单纯算法所驱动的技术差距实际上正在变得越来越小,如何将技术落地到场景才是所有的 AI 公司应该关心和考虑的。」

雷锋网 AI 科技评论

目录
相关文章
|
18天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
77 3
|
1天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗健康领域中的多维度应用,从疾病诊断、个性化治疗到健康管理,展现了AI如何革新传统医疗模式。通过分析当前实践案例与最新研究成果,文章揭示了AI技术提升医疗服务效率、精准度及患者体验的巨大潜力,并展望了其在未来医疗体系中不可或缺的地位。 ####
|
9天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用####
本文探讨了人工智能(AI)技术在医疗领域的创新应用及其带来的革命性变化。通过分析AI在疾病诊断、个性化治疗、药物研发和患者管理等方面的具体案例,展示了AI如何提升医疗服务的效率和准确性。此外,文章还讨论了AI技术面临的挑战与伦理问题,并展望了未来的发展趋势。 ####
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在医疗领域的应用与前景####
本文探讨了人工智能(AI)在医疗领域的多方面应用,包括疾病诊断、个性化治疗、患者管理以及药物研发等。通过对现有技术的梳理和未来趋势的展望,旨在揭示AI如何推动医疗行业的变革,并提升医疗服务的质量和效率。 ####
38 5
|
16天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
22天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
76 4
|
21天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
24天前
|
人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第31天】本文将探讨AI技术在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念开始,然后详细介绍其在医疗领域的应用,包括疾病诊断、药物研发、患者护理等方面。最后,我们将讨论AI技术在医疗领域面临的挑战,如数据隐私、算法偏见等问题。
|
24天前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
23天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第33天】随着人工智能技术的不断发展,其在医疗领域的应用也越来越广泛。从辅助诊断到治疗方案的制定,AI技术都发挥着重要作用。然而,随之而来的挑战也不容忽视,如数据隐私保护、算法的透明度和可解释性等问题。本文将探讨AI技术在医疗领域的应用及其面临的挑战。
29 0