【学习记录】《DeepLearning.ai》第十三课:特殊应用:人脸识别和神经风格转换(Specialapoplications:Face recognition&Neural style transfer)

简介: 2021/9/13

第十三课:特殊应用:人脸识别和神经风格转换(Specialapoplications:Face recognition&Neural style transfer)

4.1 什么是人脸识别?

科普

人脸识别可能一个人的识别准确率是99%,那么100个人的识别可能需要更高的准确率,99.9%等等。


4.2 One-Shot学习

人脸识别所面临的一个挑战就是需要解决一次学习问题,要想让人脸识别做到一次学习,应该使用Similarity函数,如下图:

image

查看输入的两张图片(img1,img2)的差异性,如果差异性小于一个数,说明相同,差异性大于一个数,说明不相同。

image


4.3 Siamese网络(Siamese network)

image

image

Siamese网络就是首先定义了一个编码函数,对于输入的函数,能够输出一个128维编码,如果两个输入对应的输出的范数比较小,就是同一个人,相反,就是不同的人。


4.4 Triplet损失

定义三元组损失函数然后应用梯度下降

image

image

上面的公式是损失函数,给出3个图片,A、P、N,其中A和P是同一个人,A和N是不同的人,定义损失函数如上,$+\alpha$​是为了防止损失函数大于0,损失函数的目的是确保损失函数等于0。

只要损失函数小于0,则损失函数就是0.

上面的A、P、N就是三元组。

三元组的选择不能太随意,要选择很难训练的A、P、N。下图是解释:

image


4.5 人脸验证与二分类(Face verification and binary classification)

可以把人脸识别当做二分类问题。

定义输出$\widehat{y}$如下:

image

image

如果相同输出1,相反输出0

4.6 神经风格迁移(Neural style transfer)

image

不得不说,第二张合成图好阴间。。。

C表示内容图像,S表示风格图像,G表示生成的图像。


4.7 深度卷积网络学习什么?(What are deep ConvNets learning?)

image

网络第一层能检测出一些边缘或颜色阴影等,随着层数的加深,能够检测到更复杂的东西。图中举例的每个方框代表了不同的9个代表性神经元。


4.8 神经风格迁移系统的代价函数

image

神经风格迁移系统的代价函数:

$$ J(G)=\alpha {J_{content}}(C,G)+\beta J_{style}(S,G) $$

第一个是内容代价函数,第二个是风格代价函数。

前面的系数表示权重

image

上面定义了一个生成图片G的代价函数,并将其最小化。


4.9 内容代价函数(Content cost function)

用$a^{[l][C]}$​和$a^{[l][G]}$​来代表两个图片C和G的l层的激活函数值。如果两个激活值相似,那么就意味着两个图片的内容相似,因此:

内容代价函数:

$$ J_{content}(C,G)=\frac{1}{2}||a^{[l][C]}-a^{[l][G]}||^2 $$

通过超参数$\alpha$来调整代价函数。


4.10 风格代价函数(Style cost function)

没怎么看懂,给出了一个风格代价函数。


4.11 一维和三维推广

之前讲的卷积都是在2D上讨论的,当然可以以相同的方式来推广到1D和3D空间。


OVER!

相关文章
|
8天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
12天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。
|
13天前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
57 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
8天前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
35 4
|
18天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
55 10
|
11天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗诊断中的应用与挑战
本文旨在揭示人工智能(AI)技术如何革新医疗诊断领域,提高疾病预测的准确性和效率。通过分析AI在图像识别、数据分析等方面的应用实例,本文将探讨AI技术带来的便利及其面临的伦理和法律问题。文章还将提供代码示例,展示如何使用AI进行疾病诊断的基本过程。
|
18天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
|
19天前
|
传感器 人工智能 算法
AI在农业中的应用:精准农业的发展
随着科技的发展,人工智能(AI)在农业领域的应用日益广泛,尤其在精准农业方面取得了显著成效。精准农业通过GPS、GIS、遥感技术和自动化技术,实现对农业生产过程的精确监测和控制,提高产量和品质,降低成本和环境影响。AI在作物生长监测、气候预测、智能农机、农产品品质检测和智能灌溉等方面发挥重要作用,推动农业向智能化、高效化和可持续化方向发展。尽管面临技术集成、数据共享等挑战,但未来前景广阔。
|
19天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗影像诊断中的应用
探索AI在医疗影像诊断中的应用

热门文章

最新文章