云从科技刷新一项语音识别纪录:将 Librispeech 数据集上的错词率降至 2.97%

简介: 超过阿里、百度、约翰霍普金斯大学等企业及高校~
TB1yZo5ppzqK1RjSZFoXXbfcXXa.jpg

云从科技

+4 AI影响因子

活动

企业:云从科技

操作:刷新记录

事项:云从科技刷新一项语音识别纪录

雷锋网(公众号:雷锋网) AI 科技评论按:10 月 29 日,云从科技宣布在全球最大的开源语音识别数据集 Librispeech 上,将错词率(Worderrorrate,WER)降到了 2.97%,并将 Librispeech 的 WER 指标提升了 25%,超过阿里、百度、约翰霍普金斯大学等企业及高校,刷新了原先记录。

将 Librispeech 数据集上的错词率降至 2.97%

Librispeech 是当前衡量语音识别技术的最权威主流的开源数据集,错词率(Worderrorrate,WER)是衡量语音识别技术水平的核心指标。

TB1z.38pwHqK1RjSZFgXXa7JXXa.png

 DS2:百度,ESPnet:约翰霍普金斯大学,DFSMN-CE:阿里

云从科技在 Librispeech 数据集上将错词率(Worderrorrate,WER)降到了 2.97%,较之前提升了 25%。这项成果有利于语音识别技术的进步,也有助于推动语音识别带来良好的智慧交互体验。

云从科技此次推出的语音识别模型 Pyramidal-FSMN 融合图像识别与语音识别的优势,将残差卷积网络和金字塔记忆模块的序列记忆网络相结合, 能够同时有效的提取空间和时间上不同粒度的信息,对比目前业界使用最为广泛的 LSTM 模型,训练速度更快、识别准确率更高。

语音识别技术近年进展

2017 年 3 月,IBM 结合了 LSTM 模型和带有 3 个强声学模型的 WaveNet 语言模型。「集中扩展深度学习应用技术终于取得了 5.5% 错词率的突破」。相对应的是去年 5 月的 6.9%。

2017 年 8 月,微软发布新的里程碑,通过改进微软语音识别系统中基于神经网络的听觉和语言模型,在去年基础上降低了大约 12% 的出错率,错词率为 5.1%,声称超过专业速记员。相对应的是去年 10 月的 5.9%,声称超过人类。

2017 年 12 月,谷歌发布全新端到端语音识别系统(State-of-the-art Speech Recognition With Sequence-to-Sequence Models),错词率降低至 5.6%。相对于强大的传统系统有 16% 的性能提升。

2018 年 6 月,阿里巴巴达摩院推出了新一代语音识别模型 DFSMN,将全球语音识别准确率纪录提高至 96.04%,错词率降低至 3.96%。

2018 年 10 月,云从科技发布全新 Pyramidal-FSMN 语音识别模型,将错词率(Worderrorrate,WER)降低至 2.97%,较之前提升了 25%。

Pyramidal-FSMN 语音识别模型原理解析

云从科技提出的新型网络结构,能更加有效的提取空间和时间特征的角度,为语音识别进一步发展提供了一些新的思路: 

模型设计采用一种残差卷积网络和金字塔记忆模块的序列记忆网络相结合的结构; 

训练方式使用 lattice-free 最大互信息(lattice-free maximum mutual information,LF-MMI/Chain)与交叉熵(cross entropy,CE)损失函数相结合的多任务学习技术;

解码部分采取 RNNLM rescoring 的方式,利用 RNN 提取一个句子中的长期语义信息,从而更有效地帮助声学模型得到准确的句子。

如下图所示,作者采用了由 6 层 Residual CNN 和 10 层 Pyramidal-FSMN 相结合的网络结构。前端网络借鉴了图像识别中经典的 Residual CNN 结构,更有效地提取特征与时间相互的关联信息,同时 skip connection 避免了 CNN 网络加深之后梯度消失和梯度爆炸问题。在金字塔记忆模块中,浅层的网络主要聚焦于音素本身的特征学习,所以只需抽取短时上下文信息,而深层的网络由于已经学习到了足够的固定时间的音素信息,需要学习长时间包括语义和语法特征,所以深层抽取长时间的上下文信息。利用这样的金字塔结构,既能减少参数,缩小模型结构,也能更加精巧的模拟人类处理语音信号的过程,提高识别效果。

TB1meI6ppzqK1RjSZFvXXcB7VXa.png

在损失函数部分,作者采用了基于 LF-MMI 的序列性训练方式。同时为了解决序列性训练容易导致过拟合的问题,又引入了传统的交叉熵损失函数,在 LF-MMI 输出之外加入另一个输出层作为一个正则技术,通过设置交叉熵的正则化系数,两个目标能够有效地学习并且避免过拟合问题。

最后,作者使用了 RNNLM rescoring 技术对解码做进一步处理。在没有 RNNLM rescoring 的情况下,Pyramidal-FSMN 已经达到了目前最好的结果,rescoring 之后又有了更进一步的提升。

声学模型和 RNNLM 的训练数据完全基于 Librispeech 和通用的语言模型数据集,并没有额外引入其他的训练数据这样的「技巧」性策略。

论文地址:https://arxiv.org/abs/1810.11352

相关介绍:

LibriSpeech 数据集:世界最大的免费语音识别数据库,包含文本和语音的有声读物数据集,由 1000 小时的多人朗读的清晰音频组成,且包含书籍的章节结构。雷锋网雷锋网

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
目录
相关文章
|
6月前
|
人工智能 自然语言处理 语音技术
GigaSpeech 2:三万小时东南亚多语种语音识别开源数据集发布
GigaSpeech 2 是一个持续扩展的、多领域多语言的大规模语音识别语料库,旨在促进低资源语言语音识别领域的发展和研究。
|
7月前
|
机器学习/深度学习 自然语言处理 算法
基于深度学习的语音识别技术应用与发展
在当今数字化时代,语音识别技术已经成为人机交互领域的重要组成部分。本文将介绍基于深度学习的语音识别技术在智能助手、智能家居和医疗健康等领域的应用与发展,同时探讨该技术在未来的潜在应用和发展方向。
212 4
|
5月前
|
机器学习/深度学习 自然语言处理 算法
未来语音交互新纪元:FunAudioLLM技术揭秘与深度评测
人类自古以来便致力于研究自身并尝试模仿,早在2000多年前的《列子·汤问》中,便记载了巧匠们创造出能言善舞的类人机器人的传说。
12378 116
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。
|
1月前
|
机器学习/深度学习 自然语言处理 搜索推荐
智能语音交互技术:构建未来人机沟通新桥梁####
【10月更文挑战第28天】 本文深入探讨了智能语音交互技术的发展历程、当前主要技术框架、核心算法原理及其在多个领域的应用实例,旨在为读者提供一个关于该技术全面而深入的理解。通过分析其面临的挑战与未来发展趋势,本文还展望了智能语音交互技术如何继续推动人机交互方式的革新,以及它在未来社会中的潜在影响。 ####
70 0
|
1月前
|
机器学习/深度学习 搜索推荐 人机交互
智能语音交互技术的突破与未来展望###
【10月更文挑战第27天】 本文聚焦于智能语音交互技术的最新进展,探讨了其从早期简单命令识别到如今复杂语境理解与多轮对话能力的跨越式发展。通过深入分析当前技术瓶颈、创新解决方案及未来趋势,本文旨在为读者描绘一幅智能语音技术引领人机交互新纪元的蓝图。 ###
64 0
|
4月前
|
人工智能 算法 人机交互
FunAudioLLM技术深度测评:重塑语音交互的未来
在人工智能的浪潮中,语音技术作为人机交互的重要桥梁,正以前所未有的速度发展。近期,FunAudioLLM以其独特的魅力吸引了业界的广泛关注。本文将以SenseVoice大模型为例,深入探索FunAudioLLM在性能、功能及技术先进性方面的表现,并与国际知名语音大模型进行对比分析,同时邀请各位开发者共同参与,为开源项目贡献一份力量。
93 4
|
4月前
|
机器学习/深度学习 人工智能 语音技术
使用深度学习进行语音识别:技术探索与实践
【8月更文挑战第12天】深度学习技术的快速发展为语音识别领域带来了革命性的变化。通过不断优化模型架构和算法,我们可以期待更加准确、高效和智能的语音识别系统的出现。未来,随着技术的不断进步和应用场景的不断拓展,语音识别技术将在更多领域发挥重要作用,为人类带来更加便捷和智能的生活体验。