从SQL到NoSQL—如何使用表格存储

本文涉及的产品
对象存储 OSS,20GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
对象存储 OSS,恶意文件检测 1000次 1年
简介: NoSQL 是一个用于描述高扩展高性能的非关系数据库的术语。 NoSQL 数据库提供的 schemafree 数据模型能够让应用无需预先定义表结构,适应业务的多元化发展,而对超大数据规模和高并发的支持让 NoSQL 数据库得到了广泛的应用。

SQL 还是 NoSQL?

NoSQL 是一个用于描述高扩展高性能的非关系数据库的术语。 NoSQL 数据库提供的 schemafree 数据模型能够让应用无需预先定义表结构,适应业务的多元化发展,而对超大数据规模和高并发的支持让 NoSQL 数据库得到了广泛的应用。

SQL 与 NoSQL 数据库对比

关系型数据库 NoSQL 数据库
数据模型 关系模型对数据进行了规范化,严格的定义了表、列、索引、表之间的关系及其他数据库元素,使一张数据表的所有数据具有相同的结构。 非关系(NoSQL)数据库一般不会对表的结构进行严格的定义,一般使用分区键及键值来检索值、列集或者半结构化数据。
ACID 传统关系型数据库支持由 ACID (原子性、一致性、隔离性和持久性)定义的一组属性。其原子性体现在一个事务"全部成功或者全部失败",即完全执行成功或完全不执行某项事务。一致性表示数据库事务不能破坏关系数据的完整性以及业务逻辑上的一致性。隔离性要求并发事务应分别执行,互不干扰。持久性即一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。 为了获得更为灵活的可水平扩展的数据模型, NoSQL 数据库通常会放弃传统关系数据库的部分 ACID 属性。凭借这些特性,NoSQL数据库可用来克服一系列包括性能瓶颈、可扩展性、运营复杂性以及不断增加的管理和支持成本的问题,这也让 NoSQL 数据库成了传统关系型数据库在面临海量数据及高并发挑战时的最佳选择。
性能 性能一般取决于磁盘子系统、数据集大小以及查询优化、索引和表结构。 写性能通常受限于磁盘子系统,读性能则受限于结果集的大小
扩展 进行纵向扩展最简单的方式是使用更快的CPU、磁盘等硬件设备。要获得跨分布式系统的关系表,就需要增加使用成本及技术复杂度。 能够利用低成本硬件的分布式集群进行横向扩展,从而在不增加延迟的前提下提高吞吐量和数据规模。
API 对存储和检索数据的请求由符合结构化查询语言 (SQL) 的查询来传达。这些查询由关系数据库系统来解析和执行。 应用开发人员可以使用NoSQL数据库开放的 API 轻松存储和检索数据。通过分区键及键值,应用可以查找键值对、列集或者半结构化数据。

为什么使用表格存储?

表格存储(TableStore)是 NoSQL 数据库的一种,提供海量 NoSQL 数据存储错误,支持 schemafree 的数据模型,提供单行级别的事务,服务端自动对数据进行分区和负载均衡,让单表数据从 GBTB 再到 PB,访问并发从0百万都无需繁琐的扩容流程,写性能在 TBPB 级数据规模都能保持在单个毫秒,读性能只依赖结果数据集,而不受数据量的影响。

所以相比 OLTP(联机事务处理)场景,表格存储更适用于 Web 规模级应用程序,包括社交网络、游戏、媒体共享和 IoT(物联网)、日志监控等场景。

访问数据库

与传统关系型数据库不同,客户端都是通过http协议来访问表格存储。

下图展示了客户端与传统关系型数据库和表格存储之间的交互。

访问方式

客户端使用 Restful API 通过 HTTP 数据包来访问表格存储,表格存储服务端会对数据报文中的签名信息进行验证,详细请参考使用表格存储的 API,如果使用官网的SDK,则只需要提供所访问的表格存储endpoint、实例、AK信息即可调用SDK的接口对数据进行操作。

表格存储通过客户端来访问数据,客户端初始化方式如下:

    final String endPoint = "";
    final String accessKeyId = "";
    final String accessKeySecret = "";
    final String instanceName = "";
    SyncClient client = new SyncClient(endPoint, accessKeyId, accessKeySecret, instanceName);

客户端初始化需要填入如下参数:

  • endPoint:访问的表格存储实例的url地址
  • accessKeyId:访问表格存储所使用的accessKeyId
  • accessKeySecret:访问表格存储的所使用的accessKeySecret
  • instanceName:访问的表格存储的实例名称

创建表

表是关系数据库和表格存储中的基本数据结构。关系数据库创建表时就需要定义完整的数据结构。相比之下,表格存储的数据表则只需要定义主键信息。

SQL

使用 CREATE TABLE 语句创建表,如以下示例所示。

CREATE TABLE UserHistory (
    user_id VARCHAR(20) NOT NULL, 
    time_stamp INT NOT NULL,
    item_id VARCHAR(50),
    behavior_type VARCHAR(10),
    behavior_amount DOUBLE,
    behavior_count INT,
    content VARCHAR(100),
    PRIMARY KEY(UserId, TimeStamp)
);

此表的主键包含 user_id 和 time_stamp,在创建数据表是必须严格的定义所有的主键和属性列,如有需要,需要使用 ALTER TABLE 语句更改这些定义。

表格存储

使用表格存储创建数据表并指定如下参数,如下所示:

    public static final String TABLE_NAME = "UserHistory";

    TableMeta tableMeta = new TableMeta(TABLE_NAME);
    tableMeta.addPrimaryKeyColumn(new PrimaryKeySchema("user_id", PrimaryKeyType.STRING));
    tableMeta.addPrimaryKeyColumn(new PrimaryKeySchema("time_stamp", PrimaryKeyType.INTEGER));

    // 数据的过期时间, 单位秒, -1代表永不过期. 假如设置过期时间为一年, 即为 365 * 24 * 3600
    int timeToLive = -1;

    // 保存的最大版本数, 设置为3即代表每列上最多保存3个最新的版本
    int maxVersions = 3;

    TableOptions tableOptions = new TableOptions(timeToLive, maxVersions);
    CreateTableRequest request = new CreateTableRequest(tableMeta, tableOptions);

    // 设置读写预留值,若不设置则读写预留值均默认为0
    request.setReservedThroughput(new ReservedThroughput(new CapacityUnit(1, 1)));

    client.createTable(request);

此表的主键包含 user_id 和 time_stamp,需要提供的参数主要有:

  • TABLE_NAME:表名称
  • PrimaryKeySchema:主键的名称及类型
  • timeToLive:数据表的数据过期时间
  • maxVersion:数据表属性列的最大版本数
  • ReservedThroughtput:数据表的预留读写吞吐量,容量型实例不再支持预留吞吐量的设置

写入数据

SQL

关系数据库中,表是一个由行和列组成的二维数据结构,可以使用 INSERT 语句向表中添加行:

INSERT INTO UserHistory (
    user_id, time_stamp, item_id, behavior_type,
    behavior_amount, behavior_count, content)
VALUES(
    '10100', 1479265526, 'cell_phone', 'share', 4.9, 78,
    'The phone is quit good!'
);

表格存储

使用表格存储中可以使用 PutRow 接口插入一行数据:

    // 设置主键
    PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
    primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.fromLong(1479265526));
    PrimaryKey primaryKey = primaryKeyBuilder.build();

    // 设置属性列的值
    RowPutChange rowPutChange = new RowPutChange(TABLE_NAME, primaryKey);
    rowPutChange.addColumn(new Column("item_id", ColumnValue.fromString("cell_phone")));
    rowPutChange.addColumn(new Column("behavior_type", ColumnValue.fromString("share")));
    rowPutChange.addColumn(new Column("behavior_amount", ColumnValue.fromDouble(4.9)));
    rowPutChange.addColumn(new Column("behavior_count", ColumnValue.fromLong(78)));
    rowPutChange.addColumn(new Column("content", ColumnValue.fromString("The phone is quit good!")));

    // 插入该行数据
    client.putRow(new PutRowRequest(rowPutChange));

使用 PutRow 接口需要了解一下几个关键事项:

  • 除了表名 TABLE_NAME 和主键 primaryKey,属性列和类型可以在写入时定义
  • 多行数据的同名属性列也可以使用不同的类型
  • 大多数 SQL 数据库是面向事务的,当发出 INSERT 语句时,只有 COMMIT 之后对数据的修改才是永久性的。使用表格存储,当表格存储通过 HTTP 200 状态码(OK)进行回复时, PutRow 写入的数据已经被持久化到所有备份。
  • 多条记录的插入可以使用 BatchWriteRow 接口,可以大大提高数据的写入速度。

检索数据

SQL

SQL SELECT 语句可以查询关键列、非关键列或任意组合。WHERE 子句确定返回的行,如以下示例所示:

// 根据主键查询一行
SELECT * FROM UserHistory
WHERE user_id = '10100' AND time_stamp = 1479265526;

// 查询某个user_id下的所有数据
SELECT * FROM UserHistory
WHERE user_id = '10100';

// 根据某个user_id下的某段时间的所有记录
SELECT * FROM UserHistory
WHERE user_id = '10100' and time_stamp > 1478660726 AND time_stamp < 1479265526;

// 查询某个user_id所有收藏的记录
SELECT * FROM UserHistory
WHERE user_id = '10100' AND behavior_type = 'collect';

表格存储

表格存储中的数据查询接口可以以类似的方式检索数据,单行查询 GetRow 和范围查询 GetRange 能够提供对存储数据物理位置的快速高效访问,查询的性能只受到结果数据集大小的影响,不会受到表中数据总量大小的影响。

提供完整的主键信息,可以使用 GetRow 快速查询这行数据。
    // SELECT * FROM UserHistory WHERE user_id = '10100' AND time_stamp = 1479265526
    // 设置主键信息
    PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn('user_id', PrimaryKeyValue.fromString("10100"));
    primaryKeyBuilder.addPrimaryKeyColumn('time_stamp', PrimaryKeyValue.fromLong(1479265526));
    PrimaryKey primaryKey = primaryKeyBuilder.build();

    // 读一行
    SingleRowQueryCriteria criteria = new SingleRowQueryCriteria(TABLE_NAME, primaryKey);
    // 设置读取最新版本
    criteria.setMaxVersions(1);
    GetRowResponse getRowResponse = client.getRow(new GetRowRequest(criteria));
使用 GetRange 对某个 user_id 下所有的数据进行查询:
    // 等同于 SELECT * FROM UserHistory WHERE user_id = '10100'
    RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(TABLE_NAME);
    // 设置起始主键
    PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
    primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.INF_MIN);
    rangeRowQueryCriteria.setInclusiveStartPrimaryKey(primaryKeyBuilder.build());

    // 设置结束主键
    primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
    primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.INF_MAX);
    rangeRowQueryCriteria.setExclusiveEndPrimaryKey(primaryKeyBuilder.build());

    // 设置读取最新版本
    rangeRowQueryCriteria.setMaxVersions(1);

    // 默认读取所有的属性列
    GetRangeResponse getRangeResponse = client.getRange(new GetRangeRequest(rangeRowQueryCriteria));

需要了解的几个关键事项:

  1. GetRange 需要指定所有主键的起始范围,但每个主键的范围并不是 AND 的关系,而是以第一个主键到最后一个主键为顺序,优先比较前面的主键,当前面的主键在 GetRange 起止主键范围内,则该条数据就会被读取出来。比如两个主键起止范围为('a',5)~('c',10),由于 'a' < 'b' < 'c',所以主键为('b', 4)的数据也符合要求。
  2. INF_MIN和 INF_MAX 为 GetRange 操作专用类型,分别表示最小值和最大值。
  3. GetRange 支持 limitdirection 来控制结果集行数和读取的顺序。
  4. 为了防止网络延迟, GetRange 对一次返回的结果集进行了限制,需要对 Response 中的 next_start_primary_key 进行判断,为空时表示结果已经全部返回,不为空需要继续读取。
  5. GetRange 支持过滤器功能。
  6. 表格存储支持数据多版本功能,在使用 GetRowGetRange 接口时可以指定读取属性列的历史版本范围。

更多 GetRange 信息也可以参考:表格存储数据模型和查询操作

使用 GetRange 对某个 user_id 下某段时间范围的所有的数据进行查询:
    RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(TABLE_NAME);
    // 设置起始主键
    PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
    primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.fromLong(1478660726));
    rangeRowQueryCriteria.setInclusiveStartPrimaryKey(primaryKeyBuilder.build());

    // 设置结束主键
    primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
    primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.fromLong(1479265526));
    rangeRowQueryCriteria.setExclusiveEndPrimaryKey(primaryKeyBuilder.build());

    // 设置读取最新版本
    rangeRowQueryCriteria.setMaxVersions(1);

    // 默认读取所有的属性列
    GetRangeResponse getRangeResponse = client.getRange(new GetRangeRequest(rangeRowQueryCriteria));

该查询等同于

SELECT * FROM UserHistory
WHERE user_id = '10100' AND time_stamp > 1478660726 AND time_stamp < 1479265526;
如果需要继续对属性列做条件查询,可以使用 过滤器功能, 如下查询某个 user_id 下某所有的收藏记录:

    RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(TABLE_NAME);
    // 设置起始主键
    PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
    primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.INF_MIN);
    rangeRowQueryCriteria.setInclusiveStartPrimaryKey(primaryKeyBuilder.build());

    // 设置结束主键
    primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
    primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.INF_MAX);
    rangeRowQueryCriteria.setExclusiveEndPrimaryKey(primaryKeyBuilder.build());

    // 设置属性列的过滤条件: behavior_type = 'collect'
    SingleColumnValueFilter filter = new SingleColumnValueFilter("behavior_type", SingleColumnValueFilter.CompareOperator.EQUAL, ColumnValue.fromString("collect"));
    // 表格存储是 schemafree 模型,有些行不包括属性列 behavior_type
    // 设置为 false 表示如果该行没有属性列 behavior_type,则不满足条件条件
    filter.setPassIfMissing(false);
    rangeRowQueryCriteria.setFilter(filter);

    // 设置读取最新版本
    rangeRowQueryCriteria.setMaxVersions(1);

    // 默认读取所有的属性列
    GetRangeResponse getRangeResponse = client.getRange(new GetRangeRequest(rangeRowQueryCriteria));

该查询等同于

SELECT * FROM UserHistory
WHERE user_id = '10100' AND behavior_type = 'collect';

当然,也可以通过如下的方式来实现:

    RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(TABLE_NAME);
    // 设置起始主键
    PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.INF_MIN);
    primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.INF_MIN);
    rangeRowQueryCriteria.setInclusiveStartPrimaryKey(primaryKeyBuilder.build());

    // 设置结束主键
    primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.INF_MAX);
    primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.INF_MAX);
    rangeRowQueryCriteria.setExclusiveEndPrimaryKey(primaryKeyBuilder.build());

    // 设置数据过滤条件:user_id='10100' 并且 behavior_type = 'collect'
    SingleColumnValueFilter filter1 = new SingleColumnValueFilter("user_id", SingleColumnValueFilter.CompareOperator.EQUAL, ColumnValue.fromString("10100"));
    SingleColumnValueFilter filter2 = new SingleColumnValueFilter("behavior_type", SingleColumnValueFilter.CompareOperator.EQUAL, ColumnValue.fromString("collect"));
    CompositeColumnValueFilter filter = new CompositeColumnValueFilter(CompositeColumnValueFilter.LogicOperator.AND);
    filter.addFilter(filter1);
    filter.addFilter(filter2);
    rangeRowQueryCriteria.setFilter(filter);

该实现对整张表进行了扫描,并找出 user_id='10100' AND behavior_type='collect' 的记录,但是由于是全表扫描,其效率会远远低于基于特定主键范围的查询。

需要了解的几个关键事项:

  1. 过滤器 Filter 可以支持最多10个条件组合,可以用于 GetRow、BatchGetRow 和 GetRange 接口中。
  2. 过滤器 Filter 是对GetRange的数据在服务端进行过滤,并不会减少磁盘的IO次数,但是能够有效的降低网络传输流量。
  3. 良好的主键设计能够大大提交范围查询的效率。

更新数据

SQL

关系数据库中,可以使用 UPDATE 语句对表中的一行或者多行记录进行修改:

UPDATE UserHistory 
    SET behavior_type = 'collect'
    WHERE user_id = '10100' AND time_stamp = 1479265526 AND behavior_count > 4.0;

表格存储

使用表格存储中可以使用 UpdateRow 接口更新一行数据:

    // 设置主键
    PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn("user_id", PrimaryKeyValue.fromString("10100"));
    primaryKeyBuilder.addPrimaryKeyColumn("time_stamp", PrimaryKeyValue.fromLong(1479265526));
    PrimaryKey primaryKey = primaryKeyBuilder.build();

    // 设置更新条件:期望原行存在, 且behavior_count的值大于4.0时更新
    Condition condition = new Condition(RowExistenceExpectation.EXPECT_EXIST);
    condition.setColumnCondition(new SingleColumnValueCondition("behavior_count", SingleColumnValueCondition.CompareOperator.GREATER_THAN, ColumnValue.fromDouble(4.0)));
    rowUpdateChange.setCondition(condition);

    // 设置属性列的值
    RowUpdateChange rowUpdateChange = new RowUpdateChange(TABLE_NAME, primaryKey);
    rowUpdateChange.put(new Column("behavior_type", ColumnValue.fromSting("collect")));

    // 插入该行数据
    client.updateRow(new UpdateRowRequest(rowUpdateChange));

使用UpdateRow接口需要了解一下几个关键事项:

  1. DeleteRow 需要指定表名 TABLE_NAME 和全部的主键 primaryKey ,更新的列可以存在或者不存在
  2. UpdateRow 只会修改这一行中需要修改的列,PutRow则会使用新的数据覆盖原来整行的数据
  3. 更新可以设置两种条件检查:行存在检查条件检查
  4. SQL中 UPDATE 会对满足 WHERE 的所有记录做更新,表格存储的 UpdateRow 只更新指定主键的一行数据,条件检查也只针对本行的主键列或者属性列做检查。
  5. 多条记录的更新可以使用 BatchWriteRow 接口,可以大大提高数据的写入速度。

删除表

SQL

关系数据库中,可以使用 DROP TABLE语句来删除不再需要的数据表:

DROP TABLE UserHistory;

表格存储

使用表格存储中可以使用 DeleteTable 接口删除数据表:

    DeleteTableRequest request = new DeleteTableRequest(TABLE_NAME);
    client.deleteTable(request);

需要注意:表一经删除将无法恢复。

相关实践学习
消息队列+Serverless+Tablestore:实现高弹性的电商订单系统
基于消息队列以及函数计算,快速部署一个高弹性的商品订单系统,能够应对抢购场景下的高并发情况。
阿里云表格存储使用教程
表格存储(Table Store)是构建在阿里云飞天分布式系统之上的分布式NoSQL数据存储服务,根据99.99%的高可用以及11个9的数据可靠性的标准设计。表格存储通过数据分片和负载均衡技术,实现数据规模与访问并发上的无缝扩展,提供海量结构化数据的存储和实时访问。 产品详情:https://www.aliyun.com/product/ots
相关文章
|
8月前
|
SQL 关系型数据库 MySQL
TiDB支持的SQL语法概述
【2月更文挑战第28天】本章将对TiDB所支持的SQL语法进行概述,涵盖其主要的语法特性和功能。我们将从基本的SQL语句到更复杂的查询和操作,逐步介绍TiDB的SQL语法,帮助读者更好地理解和使用TiDB进行数据库操作。
|
5月前
|
SQL 存储 NoSQL
数据模型与应用场景对比:SQL vs NoSQL
【8月更文第24天】随着大数据时代的到来,数据存储技术也在不断演进和发展。传统的SQL(Structured Query Language)数据库和新兴的NoSQL(Not Only SQL)数据库各有优势,在不同的应用场景中发挥着重要作用。本文将从数据模型的角度出发,对比分析SQL和NoSQL数据库的特点,并通过具体的代码示例来说明它们各自适用的场景。
142 0
|
SQL 关系型数据库 MySQL
Mysql数据库基础篇 - SQL结构化查询语言
Mysql数据库基础篇 - SQL结构化查询语言
|
SQL 缓存 算法
数据库 SQL 引擎基础(上) | 学习笔记
快速学习数据库 SQL 引擎基础(上)
数据库 SQL 引擎基础(上) | 学习笔记
|
SQL 机器学习/深度学习 算法
《PolarDB forPG:用 SQL 做数据分析》|学习笔记
快速学习《PolarDB forPG:用 SQL 做数据分析》。
175 0
《PolarDB forPG:用 SQL 做数据分析》|学习笔记
|
存储 SQL NoSQL
表格存储 Tablestore SQL 商业版介绍
表格存储(Tablestore)是阿里云自研的多模型结构化数据存储,提供海量结构化数据存储以及快速的查询和分析服务。表格存储的分布式存储和强大的索引引擎能够支持 PB 级存储、千万 TPS 以及毫秒级延迟的服务能力。使用表格存储你可以方便的存储和查询你的海量数据。 表格存储在 21 年 9 月正式公测了 SQL 功能,使得你在享受表格存储全托管,灵活的存储能力之外,可以让你的业务迁移更加平顺。经
1228 0
表格存储 Tablestore SQL 商业版介绍
|
SQL 存储 Cloud Native
表格存储 SQL 操作实战
表格存储做为一款结构化存储系统,近期发布了新功能 SQL,大幅简化了查询的门槛,用户无需学习繁琐的 SDK,也不用区分表,索引等不同的接口,可以像访问传统的 MySQL 这类数据库一样,使用 SQL 的方式访问云原生的结构化大数据存储。下面我们就来具体实操下,看看查询用起来顺不顺手。
624 0
|
存储 SQL NoSQL
表格存储 SQL 功能快速上手
# 功能介绍 表格存储(Tablestore)是阿里云自研的多模型结构化数据存储,提供海量结构化数据存储以及快速的查询和分析服务。表格存储的分布式存储和强大的索引引擎能够支持 PB 级存储、千万 TPS 以及毫秒级延迟的服务能力。使用表格存储你可以方便的存储和查询你的海量数据。​ 表格存储正式发布了 SQL 功能,满足用户业务平滑迁移到表格存储并可以继续通过 SQL 方式访问表格存储,表格存储
1627 0
|
SQL 机器学习/深度学习 算法
|
SQL 分布式计算 大数据
MaxCompute SQL 基本操作介绍|学习笔记
快速学习 MaxCompute SQL 基本操作介绍
612 0