对于AI+教育的重点问题,这3位人工智能专家有话说

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

毫无疑问,人工智能(AI)等新技术正在渗入教育行业。但究竟新技术+教育将带来哪些应用场景的改变,对此,各家公司有不同的路径和畅想。

3490fd85bcdfdaae8b2d0cdd1b2dd88bc931a287

从左到右分别为王翌、王卓和林远东

11月16日,「AI早餐汇」受邀参加以“共建丨让更好的教育来得更快”为主题的GET2017教育科技大会“人工智能论坛”,几家致力AI+教育的科技公司创始人和专家悉数到场。就AI和教育结合的核心因素、AI如何驱动教育教学方式变革等热点话题给出了自己的见解。

流利说创始人兼CEO王翌:AI+教育结合的五大核心元素

教育和医疗可能是人类所有的花费里面,最昂贵的两个,它不仅花了很多的钱,还要花用户很多时间,对于所谓结果,很多时候还不一定可预测,结果不一定能拿到。

王翌认为,如今教育行业的基本矛盾,是持续增长的个性化需求和日益稀缺的师资之间的矛盾。

很多人都学了12年英语,一个普通中国年轻人,大概在英语学习上花的时间是2000—2500小时,结果90%的人是哑巴英语,看到一个老外会脸胀的通红,可能不能自如沟通,而欧标报告显示只要学习1000—1200小时,可能就能从一个零基础到接近母语水平程度,效率差别非常大,提升空间巨大。

目前,英语流利说的人工智能系统可以个性化给用户确定起始级别,这是一个可变长度自适应的定级测试。然后,通过智能算法给学生个性化的推送学习内容,每个人的内容、顺序,甚至里面的选项,都是因人而异设定的。整个课程,像一个无形的手,牵着学生往前走,不紧不慢。

王翌总结,教育的未来可以用个性化高效率这两个词概括,当下AI和教育结合的五大核心元素:团队、数据、技术本身、产品体验、内容。

至于AI+教育如何炼成,首先需要一个好的团队。其次,要积累大量数据。此外,在人工智能老师背后,需要一个学习理论来指导。

科大讯飞教育事业群副总裁王卓:人工智能技术应该给教育带来怎样的价值?

王卓认为:第一,人工智能技术要对教育数据采集的手段进行变革。大量教和学的过程化数据都是以视频、音频、图片的方式存在的,但这只是数字化。想要形成数据化,就需要人工智能技术。

人工智能技术要能把音频都转成文字,把以前写在纸上的作文识别出来,把以前在纸上写的学科试题答卷智能解析出来。用人工智能技术对课堂教学场景进行分析,是人工智能技术在数据采集和分析方面的重要价值。

第二,为教师减负增效。很多老师都在做重复性的工作,比如批改作业、重复备课。人工智能可以大幅提高老师的效率,让计算机来承担那些简单重复的工作。

第三,帮助学生实现个性化的学习,提高学习效率。一个初三学生可能花3个小时来练习一套题,第二天做这套题可以得100分。通过后台数据分析,可以在半小时里教给学生他想学的、欠缺的、需要提升的东西,剩下两个半小时的时间,学生可以做别的事情。

第四,为管理决策提供大数据,为科学治理提供支撑。国家对教育的年度投资已经达到了GDP的4%。想要知道投下去的资源是否产生了相应的效果,可以用人工智能技术分析教育大数据,给国家相关部门提供科学的决策依据。

目前,科大讯飞对教学过程性数据的采集有一个完整的链条。从课堂互动、作业到考试,都会收集对应的数据。不同数据的采集方法有所不同。

比如,用智慧课堂设备采集课堂教学互动和授课数据,用手机采集日常学生作业和练习的数据,用校级云阅卷系统采集校内考试数据,用区域数据中心采集中考、会考等区域统考数据,为个性化学习打下数据基础。

驰声科技创始人林远东:教育+技术结合的四个阶段

据介绍,驰声科技是国内教育行业最大的口语评测技术解决方案提供商,大致在6个细分行业提供智能口语评测技术。林远东参与和观察了很多合作伙伴应用驰声所提供的人工智能技术,所包装的各种各样的产品。这个过程中去体验,到底教育和技术结合的过程中,有哪些趋势和哪些规律。

他认为教育和技术的结合有四个阶段

第一个阶段,移动互联网的信息技术的普及。这个阶段作为一对一的视频载体或者教学辅助的工具,都无可避免地发现所有的教学行为、所有的学习数据都变得在线化、移动化,而且大量的数据采集、存储、分析和后续的分析和推动,实际上现在的信息整体都被存储下来了,这在移动信息或者是互联网技出现是没有办法想象的,由此形成了整个教育改良运动的非常重要的一个基础。

第二个阶段,人工智能技术阶段。很长一段时间里面,技能的习得是需要大量的人工干预的。举个例子,智能口语评测技术出现之前,人们练习口语的唯一途径是找到熟知英语口语的人,跟他一起练习。使得整个过程难以大量快速普及,很少人真正有机会张嘴说好一口外语。人工智能技术去做这个技术和改良运动的推动,它使开口练习发音技能变成了可能。

第三个阶段,教育融合。最明显的特征是自适应学习,即基于对一个学习个体的深度理解,从而规划出对他最高效的学习路径和学习内容。海量数据的自动化时代对教学的挑战是人的角色的变化,自适应学习和个性化学习本质的关键点和瓶颈是教师的角色改变和整个主流教学模式的改变,或者说教师角色的重新被定义。

第四个阶段,大数据阶段。人工智能和移动信息技术的发展,越来越多将取代教师大部分的功能,而教师转向针对采集到的海量数据去做决策,这是自适应学习的第一步。

而自适应的学习发生以后,老师对于个性化学习的决策数据开始被收集,所有人工智能的起由和推动都是数据,当这一部分数据被大量的采集,人工智能在进一步往前去替代人对于个性化学习的决策才变得可能。

随着未来海量数据和自适应学习数据这个阶段被真正意义上的记录、存储和分析,人类从大量的数据里面学习到学习的规律、教学的规律才成为可能,那个阶段才是真正意义上教育和技术进入大数据梦想的阶段。


原文发布时间为:2017-11-24

本文作者:Chloe&Linda

本文来自云栖社区合作伙伴“AI早餐汇”,了解相关信息可以关注“AI早餐汇”微信公众号

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
整合海量公共数据,谷歌开源AI统计学专家DataGemma
【10月更文挑战第28天】谷歌近期开源了DataGemma,一款AI统计学专家工具,旨在帮助用户轻松整合和利用海量公共数据。DataGemma不仅提供便捷的数据访问和处理功能,还具备强大的数据分析能力,支持描述性统计、回归分析和聚类分析等。其开源性质和广泛的数据来源使其成为AI研究和应用的重要工具,有助于加速研究进展和推动数据共享。
32 6
|
9天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
59 9
|
4天前
|
机器学习/深度学习 人工智能 算法
人工智能与医疗健康:AI如何改变生命科学
【10月更文挑战第31天】人工智能(AI)正深刻改变医疗健康和生命科学领域。本文探讨AI在蛋白质结构预测、基因编辑、医学影像诊断和疾病预测等方面的应用,及其对科研进程、医疗创新、服务效率和跨学科融合的深远影响。尽管面临数据隐私和伦理等挑战,AI仍有望为医疗健康带来革命性变革。
54 30
|
4天前
|
人工智能 自然语言处理 搜索推荐
AI辅助教育:个性化学习的新纪元
【10月更文挑战第31天】随着人工智能(AI)技术的发展,教育领域迎来了一场前所未有的变革。AI辅助教育通过智能推荐、语音助手、评估系统和虚拟助教等应用,实现了个性化学习,提升了教学效率。本文探讨了AI如何重塑教育模式,以及个性化学习在新时代教育中的重要性。
|
13天前
|
机器学习/深度学习 人工智能 算法
AI与未来教育:一场革命性融合
在这个信息爆炸的时代,人工智能(AI)正逐步渗透到我们生活的每一个角落,教育领域也不例外。本文旨在探讨AI技术如何革新传统教育模式,以及这一变革可能带来的深远影响。通过分析AI在个性化学习、智能辅导系统、教育资源优化分配等方面的应用案例,揭示其对未来教育生态的重塑潜力。同时,文章也将讨论伴随技术进步而来的挑战,如数据隐私保护、教师角色转变等问题,并提出相应的解决思路和建议,为构建更加公平、高效、人性化的教育体系提供参考。
|
13天前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能与未来医疗:AI技术如何重塑医疗健康领域###
【10月更文挑战第21天】 一场由AI驱动的医疗革命正在悄然发生,它以前所未有的速度和深度改变着我们对于疾病预防、诊断、治疗及健康管理的认知。本文探讨了AI在医疗领域的多维度应用,包括精准医疗、药物研发加速、远程医疗普及以及患者个性化治疗体验的提升,揭示了这场技术变革背后的深远意义与挑战。 ###
44 6
|
15天前
|
人工智能 自动驾驶 数据安全/隐私保护
人工智能的伦理困境:我们如何确保AI的道德发展?
【10月更文挑战第21天】随着人工智能(AI)技术的飞速发展,其在各行各业的应用日益广泛,从而引发了关于AI伦理和道德问题的讨论。本文将探讨AI伦理的核心问题,分析当前面临的挑战,并提出确保AI道德发展的建议措施。
|
12天前
|
人工智能 自然语言处理 搜索推荐
人工智能与教育:个性化学习的未来
【10月更文挑战第31天】在科技飞速发展的今天,人工智能(AI)正深刻改变教育领域,尤其是个性化学习的兴起。本文探讨了AI如何通过智能分析、个性化推荐、智能辅导和虚拟现实技术推动个性化学习,分析了其带来的机遇与挑战,并展望了未来的发展前景。
|
15天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮中的编程教育革新
【10月更文挑战第21天】在人工智能飞速发展的今天,编程教育正面临着前所未有的变革。本文通过探讨AI技术对编程教育的深远影响,以及如何利用这些技术优化教学过程,旨在启发读者思考教育的未来方向。我们将一起探索从基础语法学习到复杂算法应用的转变,并讨论如何培养适应未来社会的创新人才。
|
15天前
|
人工智能 搜索推荐 安全
人工智能与未来社会:探索AI在教育领域的革命性影响
本文深入探讨了人工智能(AI)技术在教育领域的潜在影响和变革。通过分析AI如何个性化学习路径、提高教学效率以及促进教育资源的公平分配,我们揭示了AI技术对教育模式的重塑力量。文章还讨论了实施AI教育所面临的挑战,包括数据隐私、伦理问题及技术普及障碍,并提出了相应的解决策略。通过具体案例分析,本文旨在启发读者思考AI如何助力构建更加智能、高效和包容的教育生态系统。

热门文章

最新文章

下一篇
无影云桌面