Apache Paimon多模态数据湖实践:从结构化到非结构化的技术演进

简介: 在Streaming Lakehouse Meetup中,Apache Paimon PMC叶俊豪分享了Paimon多模态数据湖创新:首创列分离架构(基于全局Row ID),解决AI场景下结构化特征动态变更难题;引入Blob类型,实现非结构化数据物理分离、跨引擎统一抽象与blob-as-descriptor流式加载;已支撑淘宝日均10PB多模态数据,并规划Deletion Vector、Blob Compaction及全局索引等演进。

在近期的 Streaming Lakehouse Meetup · Online EP.2|Paimon × StarRocks 共话实时湖仓 直播中,Apache Paimon PMC 成员/阿里云数据湖资深工程师叶俊豪带来了关于 Paimon 多模态数据湖的深度技术分享。

随着大模型训练对数据规模与多样性的要求不断提升,传统以批处理为中心的数据湖架构已难以满足 AI 工作负载对实时性、灵活性和成本效率的综合需求。特别是在推荐系统、AIGC 等典型场景中,工程师既要高频迭代结构化特征,又要高效管理图像、音频、视频等非结构化数据。面对这一挑战,Paimon 作为新一代流式数据湖存储引擎,正通过一系列底层创新,构建面向 AI 原生时代的统一数据基础设施。

一、结构化场景下的“列变更”困境

在推荐、广告等 AI 应用中,特征工程是一个持续演进的过程。例如,电商团队可能今天新增“用户近7日点击品类分布”,明天又加入“跨端行为一致性评分”。这种动态列变更导致“列爆炸”问题:表结构频繁扩展,而历史数据需与新特征对齐。

image.png

然而,已知的解决方案在此场景下仍然存在一些问题:

  • 主键表 partial-update:虽支持按主键更新部分列,但其基于 LSM 树的实现会在写入频繁时产生大量小文件,查询性能急剧下降;Compaction 虽可合并文件,却带来数倍的临时存储开销。

  • odps 存新特征值 + Join 拼接方案:将新特征写入独立表,查询时通过主键 Join 合并。看似避免了重写,但 Join 操作本身在 PB 级数据上开销巨大,且难以优化。

  • Append 表 + MERGE INTO:SQL 语法简洁,但底层仍需重写整个数据文件。对于每天增量达 PB 级的训练集,全量重写不仅成本高昂,还显著拖慢特征上线周期。

这些方案本质上都未能解耦“列”的物理存储,导致灵活性与效率不可兼得。

二、Paimon 的列分离架构:以全局 Row ID 为核心

Paimon 提出了 列分离存储架构,其核心是引入 全局唯一且连续的 Row ID。每行数据在首次写入时被分配一个在整个表生命周期内不变的 ID,且每个数据文件内的 Row ID 是连续的,元数据会记录该文件的起始 Row ID。

image.png

这一设计带来两个关键能力:

  1. 精准定位任意行:通过 Row ID 可直接定位到具体文件及偏移;

  2. 跨文件自动关联:当查询涉及多个列时,系统能根据 Row ID 范围自动将分散在不同文件中的列数据在存储层合并。

例如,当新增“用户兴趣标签”列时,Paimon 仅需写入一个包含该列与对应 Row ID 的新文件,无需修改原始特征文件。查询时,引擎透明地将两组文件按 Row ID 对齐合并,无需 SQL 层 Join,也无需重写历史数据。这种机制将列变更的存储成本从 O(N) 降至 O(ΔN),极大提升了特征迭代效率,同时节省了数十倍的存储空间。

三、迈向多模态:Blob 数据类型的三大突破

AI 训练不再局限于结构化特征。AIGC、多模态大模型等场景要求数据湖能高效处理图像、短视频、长音频等非结构化数据。这类数据具有两大特点:体积差异大(几 MB 到数十 GB)、访问稀疏(训练时通常只读取片段)。

传统列式格式(如 Parquet)将多模态数据与结构化字段混存,导致即使只查用户 ID,也需加载整个含视频的大文件,I/O 效率极低。

image.png

Paimon 引入 Blob 数据类型,实现三大突破:

  1. 物理分离存储:Blob 列独立成文件,与结构化数据完全解耦。查询结构化字段时,Blob 文件完全不参与 I/O,避免资源浪费。

  2. 多引擎统一抽象:无论使用 Spark、Flink、Java SDK 还是 Python 客户端,均可通过标准的 BYTESBINARY 或 BLOB 类型定义 Blob 字段,接口一致,降低接入成本。

  3. blob-as-descriptor 机制:针对超大非结构化数据(如十几GB的视频/日志文件),传统计算引擎(如Flink/Spark)无法将其全量加载到内存中处理。为此,系统引入了 blob-as-descriptor 机制——它是一种协议,通过记录数据在外部存储(如OSS)中的位置、文件路径、起始偏移和长度等元信息,将实际数据读取任务交给下游系统按需流式加载。这样避免了内存溢出,实现了大文件高效入湖。

四、生产验证与未来演进

当前,Paimon Blob 已在淘宝、天猫等核心业务中实现大规模落地,每天有近 10PB 的多模态数据(如视频、音频、图像)通过 Blob Descriptor 协议高效写入 Paimon 湖,避免了 Flink 或 Spark 将大文件全量加载到内存的问题。然而,在实际使用中仍面临三大关键挑战:

  • 数据重复与删除问题,用户常因多次上传相同内容导致大量冗余(预估约 1PB/天的重复数据),亟需高效的去重与删除机制;

  • 小文件碎片化问题,频繁的小规模写入产生海量微小 Blob 文件,严重影响读取性能和存储效率;

  • 点查召回延迟高,缺乏对主键(如 UID)或向量特征的快速索引支持,难以满足毫秒级实时查询需求。

针对上述问题,团队已规划清晰的演进路径。

  • 点查性能优化方面,推进热 ID 下推能力,并构建统一的全局索引框架,同时支持标量索引(如字符串、数值)和向量索引(用于 AI 召回),其中基础版标量索引预计本月在开源 Master 分支可用。

  • 多模态数据管理方面,启动两项核心功能:

    • 一是基于 Deletion Vector + 占位符 的逻辑删除方案,在 Compaction 阶段安全清理重复或无效数据;

    • 二是开发 Blob Compaction 机制,自动合并小文件以提升读性能和存储密度。

此外,团队还前瞻性地提出跨表 Blob 复用的构想——多个表引用同一视频时仅存储一份物理数据,虽因涉及多表状态同步与一致性保障而技术难度较高,但已列入长期优化方向。整体目标是打造一个高效、紧凑、可快速检索的多模态数据湖底座,支撑未来 AIGC 与智能推荐等场景的规模化应用。

结语

Paimon 的技术演进,从结构化场景的列分离,到多模态数据的 Blob 抽象,每一项创新都源于真实业务痛点,并反哺于工程效率的提升。它不再只是“存储数据的地方”,而是成为 AI 原生时代的数据操作系统——高效、灵活、智能。

Paimon 将长期、持续且大力投入全模态数据湖建设,全面支持图像、音视频等非结构化数据的高效入湖、去重、合并与毫秒级点查。通过 Deletion Vector、Compaction 优化和全局索引等能力,Paimon 正构建面向 AI 时代的统一数据底座。作为开放湖表格式。

阿里云DLF 在云上提供全托管的Paimon存储服务,支持Paimon的智能存储优化与冷热分层。同时,DLF提供安全、开放、支持全模态数据的一体化Lakehouse管理平台,深度融入兼容其他例如 Iceberg、Lance 等主流格式,无缝对接 Flink、Spark 等计算引擎,,为 AIGC 与多模态智能应用提供高性能、低成本、易治理的数据基础设施。

阿里云DLF提供商业版Paimon服务,新用户免费试用100GB存储,1000CUH,点击领取https://free.aliyun.com/?productCode=dlf

image.png

在数据驱动的 AI 时代,基础设施的价值,最终要体现在对业务效率的实质性推动上。 Paimon 的实践,正为整个行业提供一条通往高效、统一、智能数据湖的新路径。


阿里云DLF提供商业版Paimon服务,新用户免费试用100GB存储,1000CUH,点击领取https://free.aliyun.com/?productCode=dlf

EMR Serverless StarRocks:2025年9月登顶全球TPC-H 10TB 性能和性价比榜单,性能比传统 OLAP 引擎提升 3-5 倍,100%兼容开源StarRocks,欢迎免费测试 >> https://free.aliyun.com/?searchKey=StarRocks

前往阿里云EMR官网开通 Serverless StarRocks试用并分享体验反馈,晒图可以领取精美礼品:https://x.sm.cn/EDWpX6I


更多内容


活动推荐

复制下方链接或者扫描左边二维码

即可免费试用阿里云 Serverless Flink,体验新一代实时计算平台的强大能力!

了解试用详情:https://free.aliyun.com/?productCode=sc

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
消息中间件 存储 Kafka
湖流一体:基于  Fluss+ Paimon 的实时湖仓数据底座
阿里云Fluss是面向分析场景的新一代列式流存储系统,填补“分析型+流处理”空白。它原生支持Schema、实时更新与Changelog,通过Union Read实现湖流一体,与Paimon/Iceberg无缝协同,提供秒级新鲜度、低成本回溯与统一SQL查询能力。
244 0
|
17天前
|
Web App开发 人工智能 JSON
别再手写提示词!需求澄清 + 50多专业提示词框架自动匹配,效率提升10倍!
Prompt Optimizer 是一款智能提示词优化工具,内置50+专业框架,支持需求澄清、歧义确认与自动匹配,兼容多模型,显著提升AI输出质量并降低API成本。(239字)
别再手写提示词!需求澄清 + 50多专业提示词框架自动匹配,效率提升10倍!
|
30天前
|
存储 缓存 数据建模
StarRocks + Paimon: 构建 Lakehouse Native 数据引擎
12月10日,Streaming Lakehouse Meetup Online EP.2重磅回归,聚焦StarRocks与Apache Paimon深度集成,探讨Lakehouse Native数据引擎的构建。活动涵盖架构统一、多源联邦分析、性能优化及可观测性提升,助力企业打造高效实时湖仓一体平台。
346 39
|
16天前
|
人工智能 关系型数据库 分布式数据库
重磅更新!PolarDB数据库全面内化AI能力
2026阿里云PolarDB开发者大会上,PolarDB正式发布AI原生数据库系列能力,推出AI数据湖库(Lakebase)、模型算子化、Agent托管等创新功能,实现多模态数据统一管理与库内智能推理,推动数据库从“AI就绪”迈向“AI原生”,赋能企业高效构建安全合规的AI应用。
96 1
重磅更新!PolarDB数据库全面内化AI能力
|
2月前
|
消息中间件 Java Kafka
在 OpenAI 打造流处理平台:超大规模实时计算的实践与思考
本文介绍OpenAI构建流处理平台的实践与挑战。面对Kafka高可用、Python生态兼容、云环境限制等问题,团队基于PyFlink打造跨区域流处理架构,集成Kafka HA组、自研代理与控制平面,支撑实时Embedding生成、特征计算等场景,并推动开源协作与平台自动化演进。
196 1
在 OpenAI 打造流处理平台:超大规模实时计算的实践与思考
|
16天前
|
存储 人工智能 NoSQL
Cache 新春 | Tair KVCache 商业化暨开源发布会邀您线上观看!
AI 推理正面临“显存墙”困境:GPU 显存告急、扩容成本高、长序列卡顿。2月4日立春阿里云将发布 Tair KVCache 商业版并开源 KVCache Manager 与 HiSim 仿真工具,联合 NVIDIA Dynamo AIConfigurator 等伙伴打造存算分离的AI基础设施,开启推理效率新范式。
|
4月前
|
人工智能 API 数据处理
Flink Agents 0.1.0 发布公告
Apache Flink Agents 0.1.0 首发预览版上线!作为 Flink 新子项目,它在流处理引擎上构建事件驱动的 AI 智能体,融合 LLM、工具、记忆与动态编排,支持高吞吐、低延迟、精确一次语义,实现数据与 AI 无缝集成,助力电商、金融等实时场景智能决策。
508 39