GLM-4V-9B 视觉多模态模型本地部署教程【保姆级教程】

简介: 本教程详细介绍如何在Linux服务器上本地部署智谱AI的GLM-4V-9B视觉多模态模型,涵盖环境配置、模型下载、推理代码及4-bit量化、vLLM加速等优化方案,助力高效实现图文理解与私有化应用。

1. 前言

GLM-4V-9B 是智谱 AI 推出的最新一代开源视觉多模态模型,具备强大的图像理解、对话及推理能力。相比于云端 API,本地部署能更好地保护数据隐私,并显著降低长期使用的成本。

本教程将指导你如何在已安装 PyTorch 的 Linux 服务器上,快速完成 GLM-4V-9B 的部署与推理。


2. 环境准备

在开始之前,请确保你的服务器满足以下基础条件:

  • 操作系统: Ubuntu 20.04+ (推荐)
  • 显存:
  • FP16 模式:至少 24GB(如 RTX 3090/4090, A10/A100)
  • Int4 量化模式:至少 12GB(如 RTX 3060/4070)
  • 已安装: Python 3.10+, CUDA 11.8+, PyTorch 2.0+

2.1 安装必要依赖

如果你已经安装了 PyTorch,可以进入该步骤安装额外的库来处理图像和复杂的 Tokenizer:

pip install transformers>=4.45.0 accelerate tiktoken einops scipy pillow
# 强烈建议安装 flash-attn 以获得更快的推理速度(需支持 CUDA 11.6+)
pip install flash-attn --no-build-isolation


3. 模型下载

由于模型权重文件较大(约 18GB),国内用户推荐使用 ModelScope(魔搭社区),下载速度通常比 Hugging Face 快得多。

pip install modelscope
# 下载模型到当前目录下的 glm-4v-9b 文件夹
modelscope download --model ZhipuAI/glm-4v-9b --local_dir ./glm-4v-9b

推荐用多线程脚本加速

from modelscope import snapshot_download
model_id = 'ZhipuAI/glm-4v-9b'
# local_dir 为你想要存放模型的路径
local_dir = './glm-4v-9b'
# snapshot_download 默认支持多线程
# 增加 max_workers 参数(视你的服务器带宽而定,建议设置 4-8)
snapshot_download(
    model_id, 
    local_dir=local_dir, 
    cache_dir='./cache', # 临时缓存目录
    max_workers=16        # 开启8个线程同时下载
)

4. 核心部署代码

创建一个 inference.py 文件,填入以下代码。该脚本支持加载本地权重并进行一次图文对话。

import os
import warnings
import torch
# 1. 屏蔽环境变量日志 (必须在 import transformers 之前执行)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'  # 屏蔽 TensorFlow 日志
os.environ['TRANSFORMERS_VERBOSITY'] = 'error'  # 屏蔽 Transformers 自带的大部分警告
os.environ['HF_HUB_DISABLE_SYMLINKS_WARNING'] = '1' # 屏蔽 HF 软连接警告
# 2. 屏蔽 Python 警告
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
# 3. 此时再导入剩下的库
from PIL import Image
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
# 4. 屏蔽 transformers 内部库的输出
transformers.logging.set_verbosity_error()
def run_inference():
    model_path = "./glm-4v-9b"
    # 1. 加载分词器
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
    # 2. 加载模型
    print("[1/3] 正在加载模型至显存 (BF16)...")
    model = AutoModelForCausalLM.from_pretrained(
        model_path,
        trust_remote_code=True,
        torch_dtype=torch.bfloat16,
        device_map="auto"
    ).eval()
    # 兼容性小补丁
    if not hasattr(model.config, "num_hidden_layers"):
        model.config.num_hidden_layers = model.config.num_layers
    # 3. 准备输入
    image_path = "demo.jpg" 
    query = "请详细描述这张图片。"
    try:
        image = Image.open(image_path).convert("RGB")
    except Exception:
        print(f"错误:无法找到图片 {image_path}")
        return
    inputs = tokenizer.apply_chat_template(
        [{"role": "user", "image": image, "content": query}],
        add_generation_prompt=True,
        tokenize=True,
        return_tensors="pt",
        return_dict=True
    ).to("cuda")
    # 4. 执行推理
    print("[2/3] 模型正在思考...")
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=512,
            do_sample=False,
            use_cache=True,
            eos_token_id=tokenizer.eos_token_id
        )
        response_ids = outputs[0][len(inputs['input_ids'][0]):]
        response = tokenizer.decode(response_ids, skip_special_tokens=True)
    print("[3/3] 推理完成。")
    print("\n" + "="*30 + " 模型回答 " + "="*30)
    print(response)
    print("="*70 + "\n")
if __name__ == "__main__":
    run_inference()


5. 效果演示

6. 进阶配置:针对不同场景的优化

方案 A:显存不足?使用 4-bit 量化

如果你的显存小于 20GB,可以通过 bitsandbytes 开启 4-bit 量化加载,显存占用将降至约 9-11GB

首先安装:pip install bitsandbytes

修改模型加载部分:

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    load_in_4bit=True,   # 开启 4bit 量化
    device_map="auto"    # 自动分配显存
)

方案 B:高并发推理?使用 vLLM 部署

如果你希望将模型作为 API 服务提供给前端使用,推荐使用 vLLM 框架,它的吞吐量比原生 Transformers 高出数倍。

pip install vllm
# 启动兼容 OpenAI 接口的服务
python -m vllm.entrypoints.openai.api_server \
    --model ./glm-4v-9b \
    --trust-remote-code \
    --gpu-memory-utilization 0.9 \
    --max-model-len 4096 \
    --port 8000

部署后,你可以直接使用 OpenAI 的 SDK 调用它。


7. 常见坑点排查(FAQ)

  1. 报错 AttributeError: 'ChatGLMTokenizer' object has no attribute 'apply_chat_template'
  • 解决: 请确保 transformers 版本大于 4.44.0。如果版本正确仍报错,检查 tokenizer_config.json 是否在模型目录中。
  1. 显存溢出 (OOM)
  • 解决: 减小 max_length;或者使用上文提到的 4-bit 量化方案。
  1. 图片识别效果差
  • 解决: 检查图片读取时是否转换为了 .convert("RGB"),GLM-4V 对灰度图或带 Alpha 通道的图可能不兼容。

8. 结语

GLM-4V-9B 展现了极强的图文理解能力,通过本地部署,你可以将其集成到自动化办公、智能安检、医疗影像辅助等多种私有化场景中。如果你在部署过程中遇到问题,欢迎在评论区交流!

相关文章
|
4天前
|
存储 JavaScript 前端开发
JavaScript基础
本节讲解JavaScript基础核心知识:涵盖值类型与引用类型区别、typeof检测类型及局限性、===与==差异及应用场景、内置函数与对象、原型链五规则、属性查找机制、instanceof原理,以及this指向和箭头函数中this的绑定时机。重点突出类型判断、原型继承与this机制,助力深入理解JS面向对象机制。(238字)
|
3天前
|
云安全 人工智能 安全
阿里云2026云上安全健康体检正式开启
新年启程,来为云上环境做一次“深度体检”
1482 6
|
5天前
|
安全 数据可视化 网络安全
安全无小事|阿里云先知众测,为企业筑牢防线
专为企业打造的漏洞信息收集平台
1316 2
|
4天前
|
缓存 算法 关系型数据库
深入浅出分布式 ID 生成方案:从原理到业界主流实现
本文深入探讨分布式ID的生成原理与主流解决方案,解析百度UidGenerator、滴滴TinyID及美团Leaf的核心设计,涵盖Snowflake算法、号段模式与双Buffer优化,助你掌握高并发下全局唯一ID的实现精髓。
332 160
|
4天前
|
人工智能 自然语言处理 API
n8n:流程自动化、智能化利器
流程自动化助你在重复的业务流程中节省时间,可通过自然语言直接创建工作流啦。
382 6
n8n:流程自动化、智能化利器
|
13天前
|
机器学习/深度学习 安全 API
MAI-UI 开源:通用 GUI 智能体基座登顶 SOTA!
MAI-UI是通义实验室推出的全尺寸GUI智能体基座模型,原生集成用户交互、MCP工具调用与端云协同能力。支持跨App操作、模糊语义理解与主动提问澄清,通过大规模在线强化学习实现复杂任务自动化,在出行、办公等高频场景中表现卓越,已登顶ScreenSpot-Pro、MobileWorld等多项SOTA评测。
1502 7
|
6天前
|
人工智能 API 开发工具
Skills比MCP更重要?更省钱的多!Python大佬这观点老金测了一周终于懂了
加我进AI学习群,公众号右下角“联系方式”。文末有老金开源知识库·全免费。本文详解Claude Skills为何比MCP更轻量高效:极简配置、按需加载、省90% token,适合多数场景。MCP仍适用于复杂集成,但日常任务首选Skills。推荐先用SKILL.md解决,再考虑协议。附实测对比与配置建议,助你提升效率,节省精力。关注老金,一起玩转AI工具。
|
3天前
|
Linux 数据库
Linux 环境 Polardb-X 数据库 单机版 rpm 包 安装教程
本文介绍在CentOS 7.9环境下安装PolarDB-X单机版数据库的完整流程,涵盖系统环境准备、本地Yum源配置、RPM包安装、用户与目录初始化、依赖库解决、数据库启动及客户端连接等步骤,助您快速部署运行PolarDB-X。
237 1
Linux 环境 Polardb-X 数据库 单机版 rpm 包 安装教程
|
14天前
|
人工智能 Rust 运维
这个神器让你白嫖ClaudeOpus 4.5,Gemini 3!还能接Claude Code等任意平台
加我进AI讨论学习群,公众号右下角“联系方式”文末有老金的 开源知识库地址·全免费
1388 17
|
4天前
|
自然语言处理 监控 测试技术
互联网大厂“黑话”完全破译指南
互联网大厂黑话太多听不懂?本文整理了一份“保姆级”职场黑话词典,涵盖PRD、A/B测试、WLB、埋点、灰度发布等高频术语,用大白话+生活化类比,帮你快速听懂同事在聊什么。非技术岗也能轻松理解,建议收藏防踩坑。
298 161