Apache Airflow 开源最顶级的分布式工作流平台

简介: Apache Airflow 是一个用于创作、调度和监控工作流的平台,通过将工作流定义为代码,实现更好的可维护性和协作性。Airflow 使用有向无环图(DAG)定义任务,支持动态生成、扩展和优雅的管道设计。其丰富的命令行工具和用户界面使得任务管理和监控更加便捷。适用于静态和缓慢变化的工作流,常用于数据处理。

背景介绍

Apache Airflow(或简称Airflow)是一个以编程方式创作,计划和监视工作流的平台。

当工作流定义为代码时,它们将变得更加可维护、可版本控制、可测试和协作。

使用 Airflow 将工作流创作为任务的有向无环图 (DAG)。Airflow 调度程序在遵循指定的依赖项的同时,在一组工作线程上执行您的任务。丰富的命令行实用程序使在 DAG 上执行复杂的手术变得轻而易举。丰富的用户界面使您可以轻松可视化生产中运行的管道、监视进度并在需要时解决问题。

Airflow最适合大多数静态且缓慢变化的工作流程。当 DAG 结构在一次运行到下一次运行之间相似时,它会阐明工作单元和连续性。其他类似的项目包括Luigi,Oozie和Azkaban。

Airflow 通常用于处理数据,但认为理想情况下任务应该是幂等的(即任务的结果将是相同的,并且不会在目标系统中创建重复的数据),并且不应将大量数据从一个任务传递到下一个任务(尽管任务可以使用 Airflow 的 XCom 功能传递元数据)。对于高容量、数据密集型任务,最佳做法是委派给专门从事此类工作的外部服务。

Airflow 不是流解决方案,但它通常用于处理实时数据,从流中批量提取数据。

使用原则:

  • 动态:气流管道是配置即代码(Python),允许动态管道生成。这允许编写动态实例化管道的代码。
  • 可扩展:轻松定义您自己的运算符、执行器并扩展库,使其适合适合您的环境的抽象级别。
  • 优雅:气流管道精简而明确。参数化脚本是使用强大的 Jinja 模板引擎内置到 Airflow 的核心中。
  • 可扩展:Airflow 具有模块化架构,并使用消息队列来编排任意数量的工作线程。

实战总结

DAG:环境中所有 DAG 的概述。

网格:跨越时间的 DAG 的网格表示形式。

图形:特定运行的 DAG 依赖项及其当前状态的可视化效果。

任务持续时间:一段时间内在不同任务上花费的总时间。

甘特图:DAG 的持续时间和重叠。

代码:查看 DAG 源代码的快速方法。

使用总结

​ Airflow是一个可编程,调度和监控的工作流平台,基于有向无环图(DAG),airflow可以定义一组有依赖的任务,按照依赖依次执行。airflow提供了丰富的命令行工具用于系统管控,而其web管理界面同样也可以方便的管控调度任务,并且对任务运行状态进行实时监控,方便了系统的运维和管理。

本文由博客一文多发平台 OpenWrite 发布!

相关文章
|
3月前
|
存储 监控 固态存储
【vSAN分布式存储服务器数据恢复】VMware vSphere vSAN 分布式存储虚拟化平台VMDK文件1KB问题数据恢复案例
在一例vSAN分布式存储故障中,因替换故障闪存盘后磁盘组失效,一台采用RAID0策略且未使用置备的虚拟机VMDK文件受损,仅余1KB大小。经分析发现,该VMDK文件与内部虚拟对象关联失效导致。恢复方案包括定位虚拟对象及组件的具体物理位置,解析分配空间,并手动重组RAID0结构以恢复数据。此案例强调了深入理解vSAN分布式存储机制的重要性,以及定制化数据恢复方案的有效性。
86 5
|
5天前
|
存储 SQL Apache
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
Apache Doris 是一个基于 MPP 架构的高性能实时分析数据库,以其极高的速度和易用性著称。它支持高并发点查询和复杂分析场景,适用于报表分析、即席查询、数据仓库和数据湖查询加速等。最新发布的 2.0.2 版本在性能、稳定性和多租户支持方面有显著提升。社区活跃,已广泛应用于电商、广告、用户行为分析等领域。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
|
3月前
|
消息中间件 Java Kafka
"Kafka快速上手:从环境搭建到Java Producer与Consumer实战,轻松掌握分布式流处理平台"
【8月更文挑战第10天】Apache Kafka作为分布式流处理平台的领头羊,凭借其高吞吐量、可扩展性和容错性,在大数据处理、实时日志收集及消息队列领域表现卓越。初学者需掌握Kafka基本概念与操作。Kafka的核心组件包括Producer(生产者)、Broker(服务器)和Consumer(消费者)。Producer发送消息到Topic,Broker负责存储与转发,Consumer则读取这些消息。首先确保已安装Java和Kafka,并启动服务。接着可通过命令行创建Topic,并使用提供的Java API实现Producer发送消息和Consumer读取消息的功能。
69 8
|
3月前
|
存储 消息中间件 Java
Apache Flink 实践问题之原生TM UI日志问题如何解决
Apache Flink 实践问题之原生TM UI日志问题如何解决
44 1
|
21天前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
505 13
Apache Flink 2.0-preview released
|
25天前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
59 3
|
2月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。
|
3月前
|
消息中间件 监控 数据挖掘
基于RabbitMQ与Apache Flink构建实时分析系统
【8月更文第28天】本文将介绍如何利用RabbitMQ作为数据源,结合Apache Flink进行实时数据分析。我们将构建一个简单的实时分析系统,该系统能够接收来自不同来源的数据,对数据进行实时处理,并将结果输出到另一个队列或存储系统中。
205 2
|
3月前
|
消息中间件 分布式计算 Hadoop
Apache Flink 实践问题之Flume与Hadoop之间的物理墙问题如何解决
Apache Flink 实践问题之Flume与Hadoop之间的物理墙问题如何解决
46 3

热门文章

最新文章

推荐镜像

更多