ROS2:从初识到深入,探索机器人操作系统的进化之路

本文涉及的产品
资源编排,不限时长
简介: 【11月更文挑战第4天】ROS2的学习过程和应用,介绍DDS系统的框架和知识。

前言

最近开始接触到基于DDS的这个系统,是在稚晖君的机器人项目中了解和认识到。于是便开始自己买书学习起来,感觉挺有意思的,但是只是单纯的看书籍,总会显得枯燥无味,于是自己又开始在网上找了一些视频教程结合书籍一起来看,便让我对ROS系统有了更深的认识和理解。

ROS的发展历程

ROS诞生于2007年的斯坦福大学,这是早期PR2机器人的原型,这个项目很快被一家商业公司Willow Garage看中,类似现在的风险投资一样,他们投了一大笔钱给这群年轻人,PR2机器人在资本的助推下成功诞生。

2010年,随着PR2机器人的发布,其中的软件正式确定了名称,就叫做机器人操作系统,Robot Operating System,简称为ROS。

2014年起,ROS跟随Ubuntu系统,每两年推出一个长期支持版,每个版本支持五年时间,这标志着ROS的成熟,也让ROS加快了普及的步伐。

在2022年5月底,迎来了ROS2第一个长期支持版——ROS2 Humble,ROS2已经成熟,我们也进入了一个全新的ROS2时代。

提高机器人软件复用率,这个目标简单来讲就是不要重新造轮子

围绕这个核心目标,ROS在自身的设计上也尽量做到了模块化,由通信机制、开发工具、应用功能、生态系统四大部分组成。

ROS的相关社区

ROS全球社区有几个重要网站:

  • answers.ros.org:这是一个ROS问答网站,大家可以在上边提出任何关于ROS的问题,全球很多开发者都很乐意回答我们的问题;
  • wiki.ros.org,这是ROS的维基百科,记录了ROS教程和各种功能包的使用;
  • discourse.ros.org,这是ROS论坛,关于ROS开发的新鲜事都可以在这里发表和查看,比如ROS的活动、新功能包的发布等等。
  • index.ros.org,是ROS各种资源的一个索引网站;
  • packages.ros.org,是ROS功能包存储的数据库。

ROS与ROS2的对比

ROS最早的设计目标就是开发这样一款PR2家庭服务机器人,这款机器人绝大部分时间都是独立工作,为了让他具备充足的能力:

它搭载了工作站级别的计算平台和各种先进的通信设备,不用担忧算力不够,有足够的实力支持各种复杂的实时运算和处理;由于是单兵作战,通信绝大部分都自己内部完成,那就可以用有线连接,保证了良好的网络连接,没有丢数据或者黑客入侵的风险;这台机器人最终虽然小批量生产,但是由于高昂的成本和售价,也只能用于学术研究。

随着ROS的普及,应用ROS的机器人类型已经和PR2机器人有了天翻地覆的问题,也并不具备PR2这样的条件,那原本针对PR2设计的软件框架,就会出现一些问题,比如:要在资源有限的嵌入式系统中运行;要在有干扰的地方保证通信的可靠性;要做成产品走向市场,甚至用在自动驾驶汽车和航天机器人上。

类似的问题不断涌现,致使更加适合各种机器人应用的新一代ROS2顺势而生。

其具备以下优势:

  1. 多机器人系统:未来机器人一定不会是独立的个体,机器人和机器人之间也需要通信和协作,ROS2为多机器人系统的应用提供了标准方法和通信机制。
  2. 跨平台:机器人应用场景不同,使用的控制平台也会有很大差异,比如自动驾驶汽车中的算力性能肯定比AMR机器人强很多,为了让所有机器人都可以运行ROS2,ROS2可以跨平台运行于Linux、Windows、MacOS、RTOS,甚至是没有任何系统的微控制器(MCU)上,这样我们就不用纠结自己的控制器能不能用ROS了。
  3. 实时性:机器人运动控制和很多行为策略要求机器人具备实时性,比如机器人要可靠得在100ms内发现前方的行人,或者稳定的在1ms周期内完成运动学、动力学的解算,ROS2为类似这样的实时性需求提供了基本保障。
  4. 网络连接:无论在怎样的网络环境下,ROS2都可以尽量保障机器人大量数据的完整性和安全性,比如在wifi信号不好的时候数据也要尽力发送过去,在有黑客入侵风险的场景下要对数据进行加密解密。
  5. 产品化:,大量机器人已经走向我们的生活,未来还会越来越多,ROS2不仅可以用于机器人研发阶段,还可以直接搭载在产品中,走向消费市场,这对ROS2的稳定性、强壮性也提除了巨大挑战。
  6. 项目管理:机器人开发是一个复杂的系统工程,设计、开发、调试、测试、部署等全流程的项目管理工具和机制,也会在ROS2中体现,更方便我们去开发一款机器人。

ROS2推翻了ROS,全部进行了重构。

  • 系统架构进行了颠覆性的变化,ROS1中所有节点都需要在节点管理器ROS Master的管理下进行工作,一旦Master出现问题,系统就面临宕机的风险,ROS2实现了真正的分布式,不再有Master这个角色,借助一种全新的通信框架DDS,为所有节点的通信提供可靠保障。
  • 软件API进行了重新设计,ROS1原有的接口已经无法满足需求,ROS2结合C++最新标准和Python3语言特性,设计了更具通用性的API,虽然导致原有ROS1的代码无法直接在ROS2中运行,但是尽量保留了类似的使用方法,同时提供了大量移植的说明。
  • 编译系统进行了升级,ROS1中使用的rosbuild和catkin问题诸多,尤其是针对代码较多的大项目以及Python编写的项目,编译、链接经常会出错,ROS2对这些问题也进行了优化,重新优化后的编译系统叫做ament和colcon。

DDS的介绍

DDS其实是物联网中广泛应用的一种通信协议,类似于我们常听说的5G通信一样,DDS是一个国际标准,能够实现该标准的软件系统并不是唯一的,所以我们可以选择多个厂家提供的DDS系统,比如这里的OpenSplice、FastRTPS,还有更多厂家提供的,每一家的性能不同,适用的场景也不同。

不过这就带来一个问题,每个DDS厂家的软件接口肯定是不一样的,如果我们按照某一家的接口写完了程序,想要切换其他厂家的DDS,不是要重新写代码么?这当然不符合ROS提高软件复用率的目标。

为了解决这个问题,ROS2设计了一个ROS Middleware,简称RMW,也就是指定一个标准的接口,比如如何发数据,如何收数据,数据的各种属性如何配置,都定义好了,如果厂家想要接入ROS社区,就得按照这个标准写一个适配的接口,把自家的DDS给移植过来,这样就把问题交给了最熟悉自家DDS的厂商。对于我们这些用户来讲,某一个DDS用的不爽,只要安装另一个,然后做一个简单的配置,程序一行的都不用改,轻松更换底层的通信系统。

总之,DDS的加入,让ROS2系统更加稳定,也更加灵活,当然复杂度也会高一些。这样,我们不用再纠结ROS的通信系统是否稳定、该如何优化等问题,更多精力都可以放在其他三个部分,专注优化我们的机器人应用功能。

主要的核心概念:

ROS2的安装

目前手上用的是ubuntu20.04版本的PC,因而不是用最新版本的ROS2,但安装的方法都是一摸一样的。

1.设置编码

$ sudo apt update && sudo apt install locales
$ sudo locale-gen en_US en_US.UTF-8
$ sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8 
$ export LANG=en_US.UTF-8

2.添加源

$ sudo apt update && sudo apt install curl gnupg lsb-release 
$ sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o /usr/share/keyrings/ros-archive-keyring.gpg 
$ echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-keyring.gpg] http://packages.ros.org/ros2/ubuntu $(source /etc/os-release && echo $UBUNTU_CODENAME) main" | sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null

在安装和配置ROS的过程中遇到类似这样的报错:

curl: (7) Failed to connect to raw.githubusercontent.com port 443 after 16 ms: Connection refused

就自己改一下host

sudo vi /etc/hosts

3.安装ROS

$ sudo apt update
$ sudo apt upgrade
$ sudo apt install ros-foxy-desktop

4.设置环境变量

$ source /opt/ros/foxy/setup.bash
$ echo " source /opt/ros/foxy/setup.bash" >> ~/.bashrc

至此,ROS2就已经在系统中安装好了。

ROS2的测试

先试试ROS2底层通信系统DDS是否正常

启动第一个终端,通过以下命令启动一个数据的发布者节点:

$ ros2 run demo_nodes_cpp talker

启动第二个终端,通过以下命令启动一个数据的订阅者节点:

$ ros2 run demo_nodes_py listener

看到一直报hello world就说明成功了。

ROS的命令行

想要运行ROS2中某个节点,我们可以使用ros2 run命令进行操作

ros2 run turtlesim turtlesim_node

查看节点信息

ros2 node list

如果对某一个节点感兴趣,加上一个info子命令

ros2 node info /turtlesim

查看话题信息

ros2 topic list

看到某一个话题中的消息数据,加上echo子命令试一试

ros2 topic echo /turtle1/pose

构建开发环境

目前我都是用的vscode,推荐以下插件使用:

  1. Python插件
  2. C++插件
  3. CMake插件
  4. vscode-icons
  5. ROS
  6. Msg Language Support
  7. URDF
  8. Markdown All in One
相关实践学习
使用ROS创建VPC和VSwitch
本场景主要介绍如何利用阿里云资源编排服务,定义资源编排模板,实现自动化创建阿里云专有网络和交换机。
阿里云资源编排ROS使用教程
资源编排(Resource Orchestration)是一种简单易用的云计算资源管理和自动化运维服务。用户通过模板描述多个云计算资源的依赖关系、配置等,并自动完成所有资源的创建和配置,以达到自动化部署、运维等目的。编排模板同时也是一种标准化的资源和应用交付方式,并且可以随时编辑修改,使基础设施即代码(Infrastructure as Code)成为可能。 产品详情:https://www.aliyun.com/product/ros/
相关文章
|
2月前
|
Ubuntu 机器人 Linux
|
18天前
|
XML 算法 自动驾驶
ROS进阶:使用URDF和Xacro构建差速轮式机器人模型
【11月更文挑战第7天】本篇文章介绍的是ROS高效进阶内容,使用URDF 语言(xml格式)做一个差速轮式机器人模型,并使用URDF的增强版xacro,对机器人模型文件进行二次优化。
|
2月前
|
传感器 数据可视化 机器人
【ROS速成】半小时入门机器人ROS系统简明教程之可视化系统(三)
半小时入门机器人ROS系统简明教程之可视化系统
|
2月前
|
机器人
【ROS速成】半小时入门机器人ROS系统简明教程之安装测速(二)
半小时入门机器人ROS系统简明教程之安装测速
|
7月前
|
传感器 人工智能 监控
智能耕耘机器人
智能耕耘机器人
141 3
|
8天前
|
自然语言处理 算法 机器人
智能电话销售机器人源码搭建部署系统电话机器人源码
智能电话销售机器人源码搭建部署系统电话机器人源码
19 4
|
19天前
|
机器学习/深度学习 传感器 算法
智能机器人在工业自动化中的应用与前景###
本文探讨了智能机器人在工业自动化领域的最新应用,包括其在制造业中的集成、操作灵活性和成本效益等方面的优势。通过分析当前技术趋势和案例研究,预测了智能机器人未来的发展方向及其对工业生产模式的潜在影响。 ###
73 9
|
11天前
|
机器学习/深度学习 人工智能 运维
电话机器人源码-智能ai系统-freeswitch-smartivr呼叫中心-crm
电话机器人源码-智能ai系统-freeswitch-smartivr呼叫中心-crm
31 0
|
15天前
|
机器人 人机交互 语音技术
智能电销机器人源码部署安装好后怎么运行
销售打电销,其中90%电销都是无效的,都是不接,不要等被浪费了这些的精力,都属于忙于筛选意向客户,大量的人工时间都耗费在此了。那么,有这种新型的科技产品,能为你替代这些基本的工作,能为你提升10倍的电销效果。人们都在关心智能语音客服机器人如何高效率工作的问题,今天就为大家简单的介绍下:1、智能筛选系统:电销机器人目前已经达到一个真人式的专家级的销售沟通水平,可以跟客户沟通,筛选意向,记录语音和文字通话记录,快速帮助电销企业筛选意向客户,大大的节约了筛选时间成本和人工成本。2、高速运转:在工作效率上,人工电销员,肯定跟不上智能语音机器人,机器人自动拨出电话,跟客户交谈。电话机
92 0
|
2月前
|
人工智能 搜索推荐 机器人
挑战未来职场:亲手打造你的AI面试官——基于Agents的模拟面试机器人究竟有多智能?
【10月更文挑战第7天】基于Agent技术,本项目构建了一个AI模拟面试机器人,旨在帮助求职者提升面试表现。通过Python、LangChain和Hugging Face的transformers库,实现了自动提问、即时反馈等功能,提供灵活、个性化的模拟面试体验。相比传统方法,AI模拟面试机器人不受时间和地点限制,能够实时提供反馈,帮助求职者更好地准备面试。
64 2