表格增强生成TAG登场:解锁AI自然语言与数据库的完美结合

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 【10月更文挑战第4天】表格增强生成(TAG)范式解锁了AI自然语言处理与数据库的深度融合,旨在让用户通过自然语言便捷地查询和管理数据。TAG结合了语言模型的强大推理能力和数据库系统的高效计算能力,通过查询合成、执行及答案生成三步完成复杂查询。相较于传统Text2SQL和RAG方法,TAG在准确性上显著提升,但其应用仍面临技术门槛和数据质量等挑战。[论文地址:](https://arxiv.org/pdf/2408.14717)

近年来,人工智能(AI)与数据库的结合成为研究热点,旨在让用户能够通过自然语言与数据库进行交互,从而更便捷地获取和管理数据。然而,现有的Text2SQL和检索增强生成(RAG)等方法在处理复杂查询时存在局限性。为了解决这一问题,研究人员提出了一种名为表格增强生成(TAG)的新范式。

TAG是一种统一且通用的框架,旨在回答基于数据库的自然语言问题。它通过将语言模型(LM)的强大推理和知识能力与数据管理系统的可扩展计算能力相结合,使用户能够针对自定义数据源提出任意自然语言问题。这种结合不仅可以弥补现有方法的不足,还为AI和数据库的融合开辟了新的研究途径。

TAG模型由三个关键步骤组成:查询合成、查询执行和答案生成。首先,查询合成步骤将用户的自然语言请求转化为可执行的数据库查询。然后,查询执行步骤在数据库系统中执行该查询,以高效地计算相关数据。最后,答案生成步骤利用语言模型和相关数据生成最终的自然语言答案。

为了评估TAG的性能,研究人员开发了一系列基准测试,并发现标准方法在回答查询方面的准确率不超过20%。这表明在处理需要语义推理或世界知识的查询时,现有方法存在明显的局限性。然而,通过使用手工编写的TAG管道,研究人员发现准确率可以提高20%至65%。

尽管TAG模型在处理复杂查询方面取得了显著进展,但仍存在一些挑战。首先,TAG模型的实现需要对数据库和语言模型有深入的理解,这对于非专业人士来说可能具有挑战性。其次,TAG模型的性能在很大程度上取决于所使用的语言模型的质量和数据的可用性。

论文地址:https://arxiv.org/pdf/2408.14717

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用与挑战
【10月更文挑战第3天】本文将探讨AI技术在自然语言处理(NLP)领域的应用及其面临的挑战。我们将分析NLP的基本原理,介绍AI技术如何推动NLP的发展,并讨论当前的挑战和未来的趋势。通过本文,读者将了解AI技术在NLP中的重要性,以及如何利用这些技术解决实际问题。
|
8天前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI在自然语言处理中的创新应用
【10月更文挑战第7天】本文将深入探讨人工智能在自然语言处理领域的最新进展,揭示AI技术如何改变我们与机器的互动方式,并展示通过实际代码示例实现的具体应用。
33 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用
【9月更文挑战第17天】本文主要介绍了AI技术在自然语言处理(NLP)领域的应用,包括文本分类、情感分析、机器翻译和语音识别等方面。通过实例展示了AI技术如何帮助解决NLP中的挑战性问题,并讨论了未来发展趋势。
|
1天前
|
人工智能 自然语言处理 API
探索AI在自然语言处理中的应用
【10月更文挑战第34天】本文将深入探讨人工智能(AI)在自然语言处理(NLP)领域的应用,包括语音识别、机器翻译和情感分析等方面。我们将通过代码示例展示如何使用Python和相关库进行文本处理和分析,并讨论AI在NLP中的优势和挑战。
|
8天前
|
关系型数据库 分布式数据库 数据库
云栖大会|从数据到决策:AI时代数据库如何实现高效数据管理?
在2024云栖大会「海量数据的高效存储与管理」专场,阿里云瑶池讲师团携手AMD、FunPlus、太美医疗科技、中石化、平安科技以及小赢科技、迅雷集团的资深技术专家深入分享了阿里云在OLTP方向的最新技术进展和行业最佳实践。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用
【10月更文挑战第4天】本文将介绍人工智能(AI)在自然语言处理(NLP)领域的应用,包括语音识别、机器翻译、情感分析等方面。我们将通过一些实际案例展示AI如何帮助人们更好地理解和使用自然语言。同时,我们也会探讨AI在NLP领域面临的挑战和未来发展方向。
|
1月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
阿里云瑶池在2024云栖大会上重磅发布由Data+AI驱动的多模数据管理平台DMS:OneMeta+OneOps,通过统一、开放、多模的元数据服务实现跨环境、跨引擎、跨实例的统一治理,可支持高达40+种数据源,实现自建、他云数据源的无缝对接,助力业务决策效率提升10倍。
|
1月前
|
SQL 存储 人工智能
OceanBase CTO杨传辉谈AI时代下数据库技术的创新演进路径!
在「DATA+AI」见解论坛上,OceanBase CTO杨传辉先生分享了AI与数据库技术融合的最新进展。他探讨了AI如何助力数据库技术演进,并介绍了OceanBase一体化数据库的创新。OceanBase通过单机分布式一体化架构,实现了从小规模到大规模的无缝扩展,具备高可用性和高效的数据处理能力。此外,OceanBase还实现了交易处理、分析和AI的一体化,大幅提升了系统的灵活性和性能。杨传辉强调,OceanBase的目标是成为一套能满足80%工作负载需求的系统,推动AI技术在各行各业的广泛应用。关注我们,深入了解AI与大数据的未来!
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的未来:深度学习与自然语言处理的融合
【9月更文挑战第22天】本文旨在探讨AI技术中深度学习与自然语言处理的结合,以及它们如何共同推动未来技术的发展。我们将通过实例和代码示例,深入理解这两种技术如何相互作用,以及它们如何影响我们的生活和工作。
49 4
下一篇
无影云桌面