详解基于百炼平台及函数计算快速上线网页AI助手

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 通过阿里云百炼平台,企业可在10分钟内为其网站添加智能客服系统,提升用户体验并降低成本。流程包括:创建大模型应用、配置参数(如温度系数以控制回复的随机性)、发布应用获取API密钥;使用函数计算快速搭建示例网站,并通过简单的代码更改启用AI助手功能;还可导入私有知识库增强助手的能力。前端基于NLUX开发,支持定制化需求如样式调整和历史会话管理。服务端代码提供了调用大模型获取答案的接口。借助百炼平台,企业能迅速部署即时且个性化的在线服务,适应数字化转型的需求。

引言

在当今这个信息爆炸的时代,用户对于在线服务的需求越来越趋向于即时性和个性化。无论是寻找产品信息、解决问题还是寻求建议,人们都期望能够获得即时反馈。这对企业来说既是挑战也是机遇——如何在海量信息中脱颖而出,提供高效且贴心的服务?答案之一就是利用现在炙手可热的AI技术

阿里云百炼平台为企业提供了一种快速、便捷的方式来实现这一目标。通过集成百炼平台上的 AI 助手,企业可以在短短十分钟内为自己的网站增添一个智能客服系统,从而显著提升用户体验,同时降低人工客服的成本与压力。

本文将详细介绍如何使用阿里云百炼平台在您的网站上部署一个功能完善的 AI 助手。我们将从创建项目开始,一步步指导您完成配置,并最终让 AI 助手上线运行。无论您是技术背景深厚的专业人士,还是对此领域有所了解的产品经理,本指南都将帮助您轻松掌握这一过程。

此处附上学习地址,欢迎朋友们多交流探讨!

阿里云百炼实训营

百炼控制台

另附笔者之前的文章,里面也是较为详细的阐述了百炼平台的基础使用,可供大家学习或参考:精铸智刃·“百炼”成钢——深度探索阿里云百炼大模型开发平台

基于阿里云百炼平台及函数计算快速上线一个网页AI助手

本文的产品方案地址如下:https://www.aliyun.com/solution/tech-solution/add-an-ai-assistant-to-your-website-in-10-minutes 亲测整个流程体验下来大约耗时10分钟。

image.png

主要分为以下四个步骤:

image.png

创建大模型应用

首先需要通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证,如果有私有模型也可直接调用私有模型的接口,此处还是以百炼平台的大模型应用为例,因为比较方便。

进入百炼平台,点击【我的应用】,选择【创建应用】。

image.png

在此处任意选择一个即可,但是注意,不同的模型计价不同:

image.png

具体的计价表周周这里也整理出来了,如下图所示:

image.png

其中,通义千问-Max是通义千问2.5系列千亿级别超大规模语言模型,支持中文、英文等不同语言输入,也是这几个里面参数量最大的。

不过为了节省,周周还是使用了价格稍便宜的通义千问-Plus。

image.png

这里大家也可以看到,除了模型选择外,在参数设置中还有温度系数最长回复长度携带上下文轮数三个可控参数。

  • 温度系数:调控生成的多样性。

  • 最长回复长度:模型生成的长度限制,不包含prompt。允许的最大长度因模型不同有所改变。

  • 携带上下文轮数:设置输入模型的最大历史对话轮数,轮数越多,对话相关性越强。

后面两个是比较好理解的,这里着重说明一下温度系数的概念。

温度系数定义

温度系数是一个介于0到正无穷之间的数值,通常在实际应用中设定在一个较小的范围内,比如0到2之间。它是基于统计物理学中的概念,在机器学习中被用来模拟系统的随机性。

温度系数的作用

  • 确定性 vs 随机性

    • 当温度系数接近0时,模型倾向于选择概率最高下一个词,这使得生成的文本更为确定和保守,但也可能导致重复或缺乏创意的结果。

    • 当温度系数接近1时,模型的选择接近于均匀分布,这意味着模型将根据所有候选词汇的概率分布来做出选择,这增加了生成文本的多样性和随机性。

    • 当温度系数大于1时,模型的选择变得更加随机,甚至可能选择一些概率较低的词汇,这可能会导致生成的文本更具创新性,但也可能不太连贯

  • 平衡探索与利用

温度系数可以帮助平衡模型在探索新文本(尝试不同的生成路径)与利用已知高概率路径之间的权衡。

那么不同的场景到底适合什么样的温度呢?一般而言,低温度适合于需要高度准确和一致性的应用场景,如代码生成、专业文档编写等;中等温度适用于大多数通用场景,可以产生既连贯又有一定创造性的文本;高温度适用于需要大量创意和多样性的场景,如故事创作、诗歌生成等。

这里针对上面场景举一个简单的例子。

假设模型预测下一个词的概率分布如下:

image.png

当我温度系数=0.1,几乎总是选择"猫",因为它是概率最高的选项。

当我温度系数=1.0,按照原始概率分布进行选择,"猫"仍然是最可能的选项,但"狗"和"鱼"也会被选择

当我温度系数=2.0,选择变得更为随机,即使是概率较低的词汇也有可能被选中。

对照上面的例子,相信也很容易明白,我们现在的场景需要一定的专用性和通用性,但是专用性要求更高,所以温度系数必定选择在0~1之间,这里建议调整为0.4~0.6的这个区间,具体情况还需根据反复调试来判断。

image.png

完成后点击右上角【发布应用】。

image.png

返回我的应用页面,点击查看我的API-KEY,在弹出窗口中创建一个新API-KEY。

image.png
image.png

回到应用列表,可以查看所有百炼应用 ID。

image.png

搭建示例网站

进入函数计算界面,选择准备好的应用模板,快速搭建一个空白的示例网站。

点击【直接部署】,填写前面获取到的百炼应用 ID 以及 API-KEY。

image.png

然后其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成即可(预计耗时 1 分钟)。

image.png

应用部署完成后,您可以在应用详情的环境信息中找到示例网站的访问域名,点击即可查看,确认示例网站已经部署成功。

image.png

image.png

为网站增加 AI 助手

回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。

image.png

进入函数详情页后,在代码视图中找到public/index.html文件,然后取消红框所在位置的代码注释即可。

image.png

最后点击部署代码,等待部署完成即可。

image.png

重新访问示例网站页面以查看最新效果。

image.png

为 AI 助手增加私有知识

在接入成功后,你会发现虽然能够调用模型能力,但是对于本地的知识却完全不了解,下面,我们可以添加一些公司的相关产品资料,工作文档等。

回到百炼控制台的【数据管理】中点击导入数据,根据引导上传我私有知识库:

image.png
image.png

进入知识索引,根据引导创建一个新的知识库,并选择刚才上传的文件,其他参数保持默认即可。知识库将为上一步骤中准备的文档建立索引,以便后续大模型回答时检索参考。

【注释】选择向量存储类型时,如果您希望集中存储、灵活管理多个应用的向量数据,可选择ADB-PG

image.png
image.png
image.png

完成知识库的创建后,可以返回我的应用进入到刚才创建的应用设置界面,打开知识检索增强开关、选择知识库,测试验证符合预期后点击发布。Prompt 中会被自动添加一段信息,以便大模型在后续回答时参考检索出来的信息。

image.png

我们检验一下效果(此处我使用的自己的知识库):

image.png

应用于生产环境

该网页AI助手的前端是基于NLUX(一个用于开发大模型对话机器人的前端库)开发的,如果您对于 AI 助理有更多定制化的需求,如希望调整样式、支持历史会话管理等,可以参考 NLUX 的文档进行定制开发。

前端示例代码

<link rel="stylesheet" crossorigin href="https://g.alicdn.com/aliyun-documentation/web-chatbot-ui/0.0.14/index.css" />
<script type="module" crossorigin src="https://g.alicdn.com/aliyun-documentation/web-chatbot-ui/0.0.14/index.js"></script>
<script>
  window.CHATBOT_CONFIG = {
   
   
    endpoint: "/chat", // 可以替换为 https://{your-fc-http-trigger-domain}/chat
    displayByDefault: false, // 默认不展示 AI 助手聊天框
    aiChatOptions: {
   
    // aiChatOptions 中 options 会传递 aiChat 组件,自定义取值参考:https://docs.nlkit.com/nlux/reference/ui/ai-chat
      conversationOptions: {
   
    // 自定义取值参考:https://docs.nlkit.com/nlux/reference/ui/ai-chat#conversation-options
        conversationStarters: [
          {
   
   prompt: '哪款手机续航最长?'},
          {
   
   prompt: '你们有哪些手机型号?'},
          {
   
   prompt: '有折叠屏手机吗?'},
        ]
      },
      displayOptions: {
   
    // 自定义取值参考:https://docs.nlkit.com/nlux/reference/ui/ai-chat#display-options
        height: 600,
      },
      personaOptions: {
   
    // 自定义取值参考:https://docs.nlkit.com/nlux/reference/ui/ai-chat#chat-personas
        assistant: {
   
   
          name: '你好,我是你的 AI 助手',
          // AI 助手的图标
          avatar: 'https://img.alicdn.com/imgextra/i2/O1CN01Pda9nq1YDV0mnZ31H_!!6000000003025-54-tps-120-120.apng',
          tagline: '您可以尝试点击下方的快捷入口开启体验!',
        }
      }
    },
    dataProcessor: {
   
   
      /**
       * 在向后端大模型应用发起请求前改写 Prompt。
       * 比如可以用于总结网页场景,在发送前将网页内容包含在内,同时避免在前端显示这些内容。
       * @param {string} prompt - 用户输入的 Prompt
       * @param {string}  - 改写后的 Prompt
       */
      rewritePrompt(prompt) {
   
   
        return prompt;
      }
    }
  };
</script>
<style>
  :root {
   
   
    /* webchat 工具栏的颜色 */
    --webchat-toolbar-background-color: #1464E4;
    /* webchat 工具栏文字和按钮的颜色 */
    --webchat-toolbar-text-color: #FFF;
  }
  /* webchat 对话框如果被遮挡,可以尝试通过 z-index、bottom、right 等设置来调整位置 */
  .webchat-container {
   
   
    z-index: 100;
    bottom: 10px;
    right: 10px;
  }
  /* webchat 的唤起按钮如果被遮挡,可以尝试通过 z-index、bottom、right 等设置来调整位置 */
  .webchat-bubble-tip {
   
   
    z-index: 99;
    bottom: 20px;
    right: 20px;
  }
</style>

服务端代码

前面创建的示例网站代码中,包含了一个调用大模型获取答案的接口POST /chat,具体实现代码在文件index.js中。

函数计算应用部署时附带的 .devsapp.net 域名会在下发后 30 天内回收,且不支持 https 访问,只适合于测试验证。如果您希望在您的网站上直接调用函数计算中部署的POST /chat接口,建议使用函数计算 http 触发器中提供的域名,如:https://web-chat**.fcapp.run/chat。与此同时,建议您修改index.js中的 cors 配置,禁止其他站点对此接口的访问。

image.png
image.png

总结

在这个数字化转型加速推进的时代,利用AI技术提升在线服务的质量已成为企业成功的关键因素之一。阿里云百炼平台不仅简化了AI助手的部署流程,还帮助企业实现了服务的即时性和个性化,从而更好地满足客户需求。

通过遵循本文档中的步骤,您已经能够快速地在自己的网站上部署一个功能全面的AI助手。这不仅能显著改善用户体验,还能有效减少客户服务部门的工作负担,使企业能够在激烈的市场竞争中脱颖而出。

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
9天前
|
存储 人工智能 Serverless
AI 短剧遇上函数计算,一键搭建内容创意平台
为了帮助更多内容创作者和企业快速实现 AI 短剧创作,函数计算 FC 联合百炼联合推出“AI 剧本生成与动画创作解决方案”,通过函数计算 FC 构建 Web 服务,结合百炼模型服务和 ComfyUI 生图平台,实现从故事剧本撰写、插图设计、声音合成和字幕添加到视频合成的一站式自动化流程。创作者只需通过简单操作,就能快速生成高质量的剧本,并一键转化为精美的动画。
|
16天前
|
人工智能 运维 物联网
云大使 X 函数计算 FC 专属活动上线!享返佣,一键打造 AI 应用
如今,AI 技术已经成为推动业务创新和增长的重要力量。但对于许多企业和开发者来说,如何高效、便捷地部署和管理 AI 应用仍然是一个挑战。阿里云函数计算 FC 以其免运维的特点,大大降低了 AI 应用部署的复杂性。用户无需担心底层资源的管理和运维问题,可以专注于应用的创新和开发,并且用户可以通过一键部署功能,迅速将 AI 大模型部署到云端,实现快速上线和迭代。函数计算目前推出了多种规格的云资源优惠套餐,用户可以根据实际需求灵活选择。
|
5天前
|
存储 人工智能 Cloud Native
函数计算×百炼新春活动正式上线!三步赢取蛇年精美好礼
本次场景利用函数计算 FC 构建 Web 服务,由其提供函数计算资源以及工作流能力,您无需管理服务器等基础设施,函数计算 FC 能够根据需求自动扩展,按需计算,结合百炼模型服务实现了从文案、声音、字幕、图像生成到视频合成的一站式自动化流程,大幅简化使用 AI 创作的流程,降低了技术要求,使创作者能够更高效地生产出高质量的内容,快速响应市场需求,同时保证了作品的专业水准和创意表达。
|
18天前
|
人工智能 API UED
AI智能体再进化,工作流怎么玩?阿里云百炼上手教程
本次分享由讲师林粒粒呀介绍如何快速制作AI智能工具,特别是利用阿里云百炼平台创建工作流。通过简单的拖拽操作,小白用户也能轻松上手,实现从PPT主题到大纲的自动生成,并能一次性生成多个版本。借助API和Python脚本,还可以将Markdown格式的大纲转换为本地PPT文件。整个流程展示了AI智能体在实际应用中的高效性和实用性,帮助用户大幅提升工作效率。
110 31
|
15天前
|
人工智能 运维 Serverless
低成本 Serverless AI 检索介绍和实验
本文介绍了低成本Serverless AI检索技术,分为四部分:1) AI检索介绍,通过电商客服案例展示AI检索的应用和优势;2) 表格存储介绍,详细解释了表格存储的结构化数据处理能力及其在AI检索中的作用;3) 实验:RAG,通过具体实验演示基于表格存储的RAG流程及效果;4) 总结,强调向量检索、易用性和丰富的接口特性。整体内容展示了如何利用Serverless架构实现高效、低成本的AI检索解决方案。
|
15天前
|
存储 Serverless 文件存储
AI 场景下,函数计算 GPU 实例模型存储最佳实践
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。
|
17天前
|
人工智能 运维 Serverless
云端问道8期方案教学-基于Serverless计算快速构建AI应用开发
本文介绍了基于Serverless计算快速构建AI应用开发的技术和实践。内容涵盖四个方面:1) Serverless技术价值,包括其发展趋势和优势;2) Serverless函数计算与AI的结合,探讨AIGC应用场景及企业面临的挑战;3) Serverless函数计算AIGC应用方案,提供一键部署、模型托管等功能;4) 业务初期如何低门槛使用,介绍新用户免费额度和优惠活动。通过这些内容,帮助企业和开发者更高效地利用Serverless架构进行AI应用开发。
|
14天前
|
SQL 人工智能 数据管理
跨云数据管理平台DMS:构建Data+AI的企业智能Data Mesh
跨云数据管理平台DMS助力企业构建智能Data Mesh,实现Data+AI的统一管理。DMS提供开放式元数据服务OneMeta、一站式智能开发平台和云原生AI数据平台,支持多模数据管理和高效的数据处理。结合PolarDB、AnalyticDB等核心引擎,DMS在多个垂直场景中展现出显著优势,如智能营销和向量搜索,提升业务效率和准确性。通过DataOps和MLOps的融合,DMS为企业提供了从数据到AI模型的全生命周期管理,推动数据驱动的业务创新。
|
16天前
|
机器学习/深度学习 人工智能 缓存
基于英特尔平台加速 AI 应用及 LLM 推理性能介绍|龙蜥大讲堂第115期
本文摘自龙蜥大讲堂英特尔 AI 软件工程师黄文欢的分享,主要包括以下三个方面的内容: 1. 第五代英特尔至强处理器 2. LLM 推理加速框架 xFast Transformer 及其优化策略 3. 性能数据及 Demo 展示
|
16天前
|
人工智能 Cloud Native Serverless
Serverless Devs 官网全新升级,Serverless+AI 重磅来袭
Serverless Devs 官网迎来全新升级,主站以 AI 应用开发的叙事透出项目特性和解决方案。应用中心(Registry)将各类热门 AI 应用模版、实用 AI 工具以及 AI 工作流等呈现给用户。本次升级主题为“一站式 AI/函数/应用开发”,希望为开发者提供更加便利的应用模版搜索和展示服务,本文将对本次升级的三大看点进行整理,欢迎您来体验!

热门文章

最新文章