UED

首页 标签 UED
# UED #
关注
22629内容
|
19小时前
|
《UGC工具的能力梯度解锁指南》
本文聚焦UGC工具“强大功能”与“易用体验”的平衡难题,提出隐性赋能核心设计理念,围绕用户意图预判、能力梯度解锁、无摩擦创作流、隐性协同规则、生态接口体感化五大技术路径展开深度剖析。文中结合开发实践,阐释如何通过行为熵减模型、弹性阈值设定、跨端场景适配等创新方法,化解新手认知过载与专家需求不足的二元矛盾,构建工具与用户的体感协同关系。
11|精准 Top K 检索:搜索结果是怎么进行打分排序的?
搜索引擎排序核心在于打分与Top K检索。本文详解三种打分算法:经典TF-IDF衡量词频与区分度;BM25在此基础上引入文档长度、词频饱和等优化,支持参数调节;机器学习则融合上百因子自动学习权重,提升排序精度。最后通过堆排序高效实现Top K结果返回,兼顾性能与效果。适合搜索、推荐等场景。
15 | 最近邻检索(上):如何用局部敏感哈希快速过滤相似文章?
在搜索引擎与推荐系统中,相似文章去重至关重要。通过向量空间模型将文档转为高维向量,利用SimHash等局部敏感哈希技术生成紧凑指纹,结合海明距离与抽屉原理分段索引,可高效近似检索相似内容,避免重复展示,提升用户体验。该方法广泛应用于网页去重、图像识别等领域。
最近邻检索(上
在搜索引擎与推荐系统中,相似文章去重至关重要。本文介绍基于向量空间模型的近邻检索方法,将文档表示为TF-IDF加权的高维向量,通过计算向量间相似度识别重复内容。为提升检索效率,引入局部敏感哈希(LSH)技术,快速筛选潜在相似文章,有效优化用户体验。
精准 Top K 检索
本文介绍搜索引擎中Top K检索的打分排序机制,重点解析TF-IDF与BM25算法。TF-IDF通过词频与逆文档频率衡量词语重要性,而BM25在此基础上引入非线性增长与文档长度归一化,提升排序准确性,是现代搜索系统的核心技术之一。(238字)
|
1天前
|
11|精准 Top K 检索:搜索结果是怎么进行打分排序的?
搜索引擎排序核心在于打分与Top K检索。本文详解TF-IDF、BM25及机器学习打分方法,阐述如何综合词频、文档长度、查询词权重等因素提升排序质量,并介绍利用堆排序优化大规模数据下Top K结果返回效率,助力构建高效精准检索系统。
|
1天前
|
15 | 最近邻检索(上):如何用局部敏感哈希快速过滤相似文章?
在搜索引擎与推荐系统中,相似文章去重至关重要。本文介绍如何利用向量空间模型将文章转化为高维向量,并通过局部敏感哈希(如SimHash)实现高效近似最近邻检索,结合抽屉原理优化索引,快速找出内容相似的文章,提升用户体验。该技术广泛应用于网页去重、图像识别等场景。
11|精准 Top K 检索:搜索结果是怎么进行打分排序的?
搜索引擎排序核心在于打分与Top K检索。本文详解三种打分算法:经典TF-IDF衡量词频与区分度;BM25引入文档长度、词频上限等优化,效果更优;机器学习则融合数百因子自动学习权重,适应复杂场景。最后通过堆排序高效实现Top K结果返回,提升性能。
15 | 最近邻检索(上):如何用局部敏感哈希快速过滤相似文章?
在搜索引擎与推荐系统中,相似文章去重至关重要。通过向量空间模型将文档转化为高维向量,利用SimHash等局部敏感哈希技术生成紧凑指纹,结合海明距离与抽屉原理分段索引,可高效检索近似重复内容,在百亿网页中快速过滤雷同结果,提升用户体验。该方法适用于文本、图像等多种对象的相似性检测。
极致体验无小事:Weex购物车基础优化实践
手机淘宝购物车团队在完成Weex技术升级后,聚焦基础体验精细化治理,覆盖暗黑模式适配、热区对齐、皮肤样式优化、适老化改造与多终端兼容。通过舆情、数据与用户视角三轨驱动,实现从功能交付到体验交付的思维升级,打造更流畅、包容、个性化的购物体验。
免费试用