六自由度Stewart平台的matlab模拟与仿真

简介: **摘要**探索MATLAB2022a模拟6-DOF Stewart平台,模拟动态变化及伺服角度。平台实现XYZ平移及绕XYZ轴旋转。结构含中心动平台、固定基座及6个伺服驱动的伸缩连杆。运动学原理涉及球铰/虎克铰的转动自由度。通过动力学分析解决输入力矩到平台加速度的转换。核心算法与模型揭示了平台的精密定位能力。仿真结果显示动态性能。

1.课题概述
六自由度Stewart平台的matlab模拟与仿真,模拟六自由度Stewart平台的动态变化情况以及伺服角度。

2.系统仿真结果
1.jpeg
2.jpeg

3.核心程序与模型
版本:MATLAB2022a

for k = 1:length(Zheave)% 遍历每个时间点,计算并绘制运动轨迹和伺服角度  
    % 计算基座到平台的旋转矩阵 
Mrate = [cos(psi)*cos(theta), cos(psi)*sin(phi) * sin(theta) - cos(phi)*sin(psi), sin(phi)*sin(psi) + cos(phi)*cos(psi)*sin(theta);
             cos(theta)*sin(psi), cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta),   cos(phi)*sin(psi)*sin(theta) - cos(psi)*sin(phi);
            -sin(theta),          cos(theta)*sin(phi),                                cos(phi)*cos(theta)        ];

    %计算有效腿长  
    T  = [Xsurge(k) Ysway(k) Lsqrt+Zheave(k)]';           % 平台中心的坐标 
    q  = repmat(T,1,6) + Mrate*Platm;          % 将平台坐标转换到基座坐标系下  
xq = q(1,:);                        % 转换后的x坐标  
yq = q(2,:);                        % 转换后的y坐标  
zq = q(3,:);                        % 转换后的z坐标  

    l  = q - Base;   % 计算腿长(向量)  
    %计算伺服角度 
    L = sum(l.*l) - (Lleg^2 - Larm^2);% 计算L值(考虑伺服臂和腿的长度)
    M = 2*Larm*(zq - zb);% 计算M值(考虑z方向的差异)  
    N = 2*Larm*(cosd(Theta3).*(xq - xb) + sind(Theta3).*(yq - yb)); % 计算N值(考虑x和y方向的差异以及伺服臂角度)  
    alpha = asind(L./sqrt(M.^2 + N.^2)) - atand(N./M);      % 计算伺服角度(逆正弦和逆正切函数)  
    Sets(k,:) = alpha;% 存储计算得到的伺服角度  

    % 计算伺服臂坐标
    xa = Larm*cosd(alpha).*cosd(Theta3) + xb;
ya = Larm*cosd(alpha).*sind(Theta3) + yb;
    za = Larm*sind(alpha) + zb;

    %% Plot
clf

subplot(221);
    views;
view([0,0]); 
    title('side');

subplot(222);
    views;
view([45,45]); 
    title('iso');

subplot(223);
    views;
view([90,0]); 
    title('front');

subplot(224);
    views;
view([145,15]); 
    title('iso');
         % select view
pause(0.00001)
end

figure
plot(Times,Sets,'LineWidth',2);
xlabel('时间');
ylabel('伺服角度');
title('伺服角度');
legend('1st Arm','2st Arm','3st Arm','4st Arm','5st Arm','6st Arm');
grid on;
35

4.系统原理简介
六自由度(6-DOF)Stewart平台是一种高度灵活且广泛应用的空间定位机构,它能够实现六个独立自由度的运动:三个平动自由度(X、Y、Z轴方向的直线移动)和三个转动自由度(绕X、Y、Z轴的旋转)。这种平台由一个中心平台和通过六个具有可伸缩连杆与六个固定基座相连的伺服驱动器组成,每个连杆末端装有万向节,确保任何角度下的力矩传递。

    Stewart平台由上下两个平行平台(上平台为动平台,下平台为静平台)和六个可伸缩的支撑杆组成。每个支撑杆的两端分别通过球铰或虎克铰与上下平台相连。球铰可以实现三个方向的转动自由度,而虎克铰则可以实现两个方向的转动自由度。因此,通过合理选择球铰或虎克铰的连接方式,可以实现平台在空间中的六个自由度运动。

4.1运动学原理

368e789b66a8f8128d2b4e1e6748a26a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

4.2 Stewart平台运动学方程
动力学分析是求解平台在给定输入力和力矩下的运动加速度。对于Stewart平台而言,输入力和力矩为六个支撑杆的驱动力和驱动力矩,输出加速度为动平台的加速度和角加速度。

0becf753333c53b4054ca347f6a2032f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

相关文章
|
1天前
|
算法 数据安全/隐私保护 索引
索引OFDM调制解调系统的matlab性能仿真
本文对m索引OFDM调制解调系统性能进行了仿真分析,增加了仿真图并配有语音讲解视频,使用Matlab2022a完成仿真,代码无水印。研究了OFDM-IM技术,通过激活不同子载波组合传输额外信息,提高频谱效率和降低PAPR。提出了OFDM联合子块索引调制技术(OFDM-JS-IM)和OFDM全索引方法(OFDM-AIM),并通过遗传算法优化子块查找表,有效提升系统性能。提供了核心MATLAB程序示例。
21 3
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
21天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
20天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
21天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
22天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
1天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
205 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
131 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
95 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章