基于鲸鱼优化的DSN弱栅栏覆盖算法matlab仿真

简介: ```markdown探索MATLAB2022a中WOA与DSN弱栅栏覆盖的创新融合,模拟鲸鱼捕食策略解决传感器部署问题。算法结合“搜索”、“包围”、“泡沫网”策略,优化节点位置以最大化复杂环境下的区域覆盖。目标函数涉及能量效率、网络寿命、激活节点数、通信质量及覆盖率。覆盖评估基于覆盖半径比例,旨在最小化未覆盖区域。```

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
MATLAB2022a

3.部分核心程序

```for t=1:Iters
for i=1:Num
%目标函数更新
[pa(i),fgai] = fitness(xwoa(i,:));
Fitout = pa(i);
%更新
if Fitout < woa_get
woa_get = Fitout;
woa_idx = xwoa(i,:);
end
end
%调整参数
c1 = 2-t((1)/Iters);
c2 =-1+t
((-1)/Iters);
% w = 0.1+0.8(cos(std(pa)));
%位置更新
for i=1:Num
r1 = rand();
r2 = rand();
K1 = 2
c1r1-c1;
K2 = 2
r2;
l =(c2-1)*rand + 1;
rand_flag = rand();

    if rand_flag<0.5   
       if abs(K1)>=1
          RLidx    = floor(Num*rand()+1);
          X_rand   = xwoa(RLidx, :);
          D_X_rand = abs(K2*X_rand(1:D)-xwoa(i,1:D)); 
          xwoa(i,1:D)= X_rand(1:D)-K1*D_X_rand;     
       else
          D_Leader = abs(K2*woa_idx(1:D)-xwoa(i,1:D)); 
          xwoa(i,1:D)= woa_idx(1:D)-K1*D_Leader;    
       end
    else
        distLeader = abs(woa_idx(1:D)-xwoa(i,1:D));
        xwoa(i,1:D)  = distLeader*exp(l).*cos(l.*2*pi)+woa_idx(1:D);
    end

end

[pb,fgai]  = fitness(woa_idx);
Pbest(t)  = pb;

end
TPS=[TPS,fgai];
end
01_200m

```

4.算法理论概述
鲸鱼优化算法(Whale Optimization Algorithm, WOA)与分布式感知网络(Distributed Sensor Networks, DSN)中的弱栅栏覆盖算法结合,是一种新颖的优化策略,旨在解决如何高效部署有限数量的传感器节点以实现最大化的区域覆盖问题,尤其是在面对环境复杂度高、资源受限的场景下。鲸鱼优化算法灵感来源于座头鲸的捕食策略,主要包括“搜索觅食”、“包围圈缩紧”和“泡沫网”三个阶段。在DSN弱栅栏覆盖问题中,每个传感器节点可以被视为一个鲸鱼个体,网络覆盖的目标区域则是海洋,而目标是通过调整这些“鲸鱼”(即节点)的位置,达到最优的覆盖效果。
image.png

   覆盖评估通常采用覆盖度指标,如各节点覆盖半径内的面积总和除以总面积。优化目标是最小化未覆盖区域或最大化覆盖度,数学表达可为:

image.png

   为了达到最优的有向传感器弱栅栏覆盖,我们需要满足弱栅栏能量消耗最小1,网络寿命最长2,有向传感器激活节点数量最少3,通信质量最佳4,弱栅栏覆盖率5,即基于WOA的有向DSN弱栅栏覆盖构建算法的优化目标函数为:

image.png

相关文章
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
3天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
6天前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
4天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
40 18
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
257 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
152 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
124 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章