基于改进K-means的网络数据聚类算法matlab仿真

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: **摘要:**K-means聚类算法分析,利用MATLAB2022a进行实现。算法基于最小化误差平方和,优点在于简单快速,适合大数据集,但易受初始值影响。文中探讨了该依赖性并通过实验展示了随机初始值对结果的敏感性。针对传统算法的局限,提出改进版解决孤点影响和K值选择问题。代码中遍历不同K值,计算距离代价,寻找最优聚类数。最终应用改进后的K-means进行聚类分析。

1.程序功能描述
K-means属于聚类分析中一种基本的划分方法,常采用误差平方和准则函数作为聚类准则。主要优点是算法简单、快速而且能有效地处理大数据集。研究和分析了聚类算法中的经典K-均值聚类算法,总结出其优点和不足。重点分析了K-均值聚类算法对初始值的依赖性,并用实验验证了随机选取初始值对聚类结果的影响性。根据传统的K-means算法存在的缺陷,提出了改进后的K-means算法,主要解决了孤点对聚类中心影响的问题以及K值的确认问题。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg
3.jpeg
4.jpeg

3.核心程序

```for Cluster_Num = 2 : K_start
Cluster_Num
flags = 0;
Step = 4000;
disp('K值分类');
%随机化定义聚类中心点
Center = Data_NoGD(:,1:Cluster_Num);
%进行初始的迭代
[KindData,KindNum] = func_Kmeans_Cluster(Center,Data_NoGD);
NewCenter = func_NewCenter(KindData,KindNum,row);
%进行K值分类
while (sum(sum(NewCenter ~= Center))) & Step
Center = NewCenter;
[KindData,KindNum] = func_Kmeans_Cluster(Center,Data_NoGD);
NewCenter = func_NewCenter(KindData,KindNum,row);
Step = Step-1;
end
%计算距离代价
disp('计算距离代价');
%计算L
disp('计算L');
xl = NewCenter(1,:);
yl = NewCenter(2,:);
for j = 1 :Cluster_Num
L(j) = sqrt((Xavg - xl(j))^2 + (Yavg - yl(j))^2);
end

Lsum(Cluster_Num - 1) = sum(L)*Cluster_Num;
disp('计算D');
%计算D
for j = 1:Cluster_Num
KindData_tmpx = KindData(1,:,j);
KindData_tmpy = KindData(2,:,j);
%去掉其中的0数值
KindData_tmp = [KindData_tmpx;KindData_tmpy];
if isempty(KindData_tmp) == 1
D(i,j) = inf;
else
%开始统计
for i = 1:length(KindData_tmp)
D(i,j) = sqrt((KindData_tmp(1,i) - xl(j))^2 + (KindData_tmp(2,i) - yl(j))^2);
end
end
clear KindData_tmpKindData_tmpxKindData_tmpy
end

Dsum(Cluster_Num - 1) = sum(sum(D))/Cluster_Num;
%计算F(K)
disp('计算F');
F(Cluster_Num - 1) = Lsum(Cluster_Num - 1) + Dsum(Cluster_Num - 1);
F

 if isfinite(F(Cluster_Num - 1)) == 0
    break;
 else

 end     

pause(1)
clear tmp Center KindDataKindNumNewCenter Step xl yl L D

end

[V,IND] = min(F);
Kopt = IND+1;
fprintf('最佳聚类值K = ');
fprintf('%d',Kopt);
fprintf('\n\n');

%使用最新的K值进行聚类分析
Cluster_Num = Kopt;
[row,col] = size(Data_NoGD);
Step = 1000;
%定义三个聚类中心点
Center = Data_NoGD(:,1:Cluster_Num);
%进行初始的迭代
[KindData,KindNum] = func_Kmeans_Cluster(Center,Data_NoGD);
NewCenter = func_NewCenter(KindData,KindNum,row);
%进行据雷锋唔系
while (sum(sum(NewCenter ~= Center))) & Step
Center = NewCenter;
[KindData,KindNum] = func_Kmeans_Cluster(Center,Data_NoGD);
NewCenter = func_NewCenter(KindData,KindNum,row);
Step = Step-1;
end

func_fig(Data_NoGD,Cluster_Num,KindData);
12_005m

```

4.本算法原理
K-means聚类算法基本思想,首先算法随机选取k个点作为初始聚类中心,然后计算各个数据对象到各聚类中心的距离,把数据对象归到离它最近的那个聚类中心所在的类;对调整后的新类计算新的聚类中心,如果相邻两次的聚类中心没有任何变化,说明数据对象调整结束,聚类准则Jc已经收敛。K-means聚类算法的一个特点是在每次迭代中都要考察每个样本的分类是否正确,若不正确,就要调整。在全部数据调整完后,再修改聚类中心,进入下一次迭代。如果在一次迭代算法中,所有的数据对象被正确分类,则不会有调整,聚类中心也不会有任何变化,这标志着Jc已经收敛,至此算法结束。本文重点对K-均值聚类算法进行了研究分析,并在K-均值聚类算法的基础上提出了改进。

   K-means聚类算法是硬聚类算法,是典型的基于原型的目标函数聚类分析算法点到原型——簇中心的某种距离和作为优化的目标函数,采用函数求极值的方法得到迭代运算的调整规则。K-means聚类算法以欧氏距离作为相异性测度它是求对应某一初始聚类中心向量最优分类,使得评价指标E值最小。



   误差平方和准则函数适用于各类样本比较集中而且样本数目悬殊不大的样本分布。当不同类型的样本数目相差较大时,采用误差平方和准则。很可能把样本数目多的类分开,以便达到总的误差平方和最小。

整个算法的基本流程如下图所示:

605e5e7412f19b10893cbfbaa62e1043_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

相关文章
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
3天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
6天前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
6天前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
4天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
40 18
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
257 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
152 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
124 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)