人工智能应用工程师技能提升系列2、——TensorFlow2——keras高级API训练神经网络模型

简介: 人工智能应用工程师技能提升系列2、——TensorFlow2——keras高级API训练神经网络模型



TensorFlow 2中的Keras概述

TensorFlow 2中的Keras是一个高级深度学习API,它是TensorFlow的一个核心组件。Keras被设计为用户友好、模块化和可扩展的,允许快速构建和训练深度学习模型。

在TensorFlow 2中,Keras被集成作为TensorFlow的一个子模块,这意味着它可以直接利用TensorFlow的强大功能和优化。与独立的Keras库相比,TensorFlow 2中的Keras具有更紧密的集成和更多的功能。

使用TensorFlow 2中的Keras,您可以轻松地定义和训练各种深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)和全连接网络。它提供了许多预定义的层、损失函数和优化器,您可以轻松地将它们组合起来构建自定义模型。

此外,TensorFlow 2中的Keras还支持分布式训练,允许您利用多个GPU或TPU来加速模型训练。它还提供了对TensorBoard的可视化支持,使您能够轻松地监视和调试模型的训练过程。

总之,TensorFlow 2中的Keras是一个强大而易于使用的高级深度学习API,它允许您快速构建、训练和调试深度学习模型,并充分利用TensorFlow的功能和优化。

使用keras高级API训练神经网络模型

代码承接:人工智能应用工程师技能提升系列1、——TensorFlow2-CSDN博客

import tensorflow as tf
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据
# 直接获取二维数组·方便索引缩着切分
data = pd.read_csv("tensorflow_test_info.csv").values
# 样本特征·第一列的值
x = data[:, 0]
# 目标值·第二列的值
y = data[:, 1]
# 构造线性模型y=wx+b
# 我们计算分析的是浮点数,所以加上.0
w = tf.Variable(-10.0)
b = tf.Variable(7.0)
def model(x, w, b):
    """模型函数"""
    return w * x + b
# 视图呈现
plt.figure(figsize=(10, 5))
plt.axis([0.1, 0.55, 1, 7])
plt.scatter(x, y)
def loss(predicted_y, target_y):
    """损失函数"""
    return tf.reduce_mean(tf.square(predicted_y - target_y))
learning_rate = 0.2  # 初始学习速率时0.2

正文

这里导包的时候需要注意,使用的是2.1.5版本,不能使用tf.keras来进行操作,需要单独的使用keras来操作。

import tensorflow as tf
import pandas as pd
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential
from keras.layers import Dense, Activation
# 读取数据
# 直接获取二维数组·方便索引缩着切分
data = pd.read_csv("tensorflow_test_info.csv").values
# 样本特征·第一列的值
x = data[:, 0]
# 目标值·第二列的值
y = data[:, 1]
# 构造线性模型y=wx+b
# 我们计算分析的是浮点数,所以加上.0
w = tf.Variable(-10.0)
b = tf.Variable(7.0)
def model(x, w, b):
    """模型函数"""
    return w * x + b
# 视图呈现
plt.figure(figsize=(10, 5))
plt.axis([0.1, 0.55, 1, 7])
plt.scatter(x, y)
def loss(predicted_y, target_y):
    """损失函数"""
    return tf.reduce_mean(tf.square(predicted_y - target_y))
# learning_rate = 0.2  # 初始学习速率时0.2
model_net = Sequential()
model_net.add(Dense(1, input_shape=(1,)))
# 模型编译
model_net.compile(loss='mse', optimizer=keras.optimizers.SGD(learning_rate=0.5))
# 训练500轮
model_net.fit(x, y, verbose=1, epochs=500, validation_split=0.2)

训练轮数500,可以看到对应的损失值。

使用Keras高级API训练神经网络模型的优势包括:

用户友好性:Keras具有非常简洁和直观的API,使得用户能够轻松上手并快速构建和训练神经网络模型。

模块化和可扩展性:Keras的模型是由独立的、完全可配置的模块构成的,这些模块包括神经网络层、损失函数、优化器、初始化方法、激活函数、正则化方法等。这种模块化设计使得Keras具有很好的扩展性,用户可以轻松自定义模块来构建更复杂的模型。

支持多种神经网络结构:Keras支持卷积神经网络、循环神经网络以及两者的组合,使得用户能够轻松应对各种深度学习任务。

在CPU和GPU上无缝运行:Keras模型可以在CPU和GPU上无缝运行,这使得用户能够充分利用硬件资源,提高模型训练速度。

调试和扩展方便:Keras模型定义在Python代码中,这些代码紧凑、易于调试,并且易于扩展。用户可以轻松修改代码来调整模型结构,进行模型调试和扩展。

高度优化的性能:Keras内部采用了高度优化的C/C++代码,使得它能够轻松处理大规模数据集,提高模型训练效率。

社区支持和文档完善:Keras是一个开源项目,拥有庞大的用户社区和完善的文档。这意味着用户可以轻松找到各种教程、示例和解决方案,加快学习速度和提高工作效率。

综上所述,使用Keras高级API训练神经网络模型具有很多优势,包括用户友好性、模块化和可扩展性、支持多种神经网络结构、无缝运行于CPU和GPU、方便调试和扩展、高度优化的性能以及完善的社区支持和文档等。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
135 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
356 55
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
51 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
220 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
Kubernetes 安全 Devops
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
97 10
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
74 12
|
3月前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能中的深度学习模型优化策略
探索人工智能中的深度学习模型优化策略
127 13
|
3月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
112 8
|
3月前
|
存储 数据可视化 API
重磅干货,免费三方网络验证[用户系统+CDK]全套API接口分享教程。
本套网络验证系统提供全面的API接口,支持用户注册、登录、数据查询与修改、留言板管理等功能,适用于不想自建用户系统的APP开发者。系统还包含CDK管理功能,如生成、使用、查询和删除CDK等。支持高自定义性,包括20个自定义字段,满足不同需求。详细接口参数及示例请参考官方文档。
|
3月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
179 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型

热门文章

最新文章