NeurIPS’23 Paper Digest | 如何把 LLM 的推理能力应用于事件序列预测?

简介: 我们完成了首个把 LLM 推理能力引入事件序列领域的工作。代码、数据均已经开源,并将集成进开源库 EasyTPP。

为期一周的人工智能和机器学习领域顶级会议 NeurlPS 正在美国路易斯安那州新奥尔良市举办中。蚂蚁集团有 20 篇论文被本届会议收录,其中《Language

Models Can Improve Event Prediction by Few-Shot Abductive Reasoning》是由蚂蚁基础智能技术部、消费金融技术部与芝加哥丰田工业大学、芝加哥大学合作完成。

论文作者简介:薛思乔是这篇论文的主要作者,也是蚂蚁集团高级算法专家,主要研究方向是生成式序列模型 (sequential modeling),他的研究成果曾多次发表于主流机器学习相关会议 (NeurIPS/ICML/AAAI)。最近一年团队的主要工作聚焦于大语言模型与时间序列的交叉方向,在 NeurIPS'23 发表了事件序列预测模型的持续学习方法 "PromptTPP" 以及利用大语言模型支持事件序列预测的方法 "LAMP" 两篇论文。

论文通讯作者介绍:梅洪源,美国丰田工业大学芝加哥分校 (Toyota Technological Institute at Chicago) 研究助理教授,2021 年获得约翰霍普金斯大学计算机系博士学位。主要研究方向包括大规模概率空间序列模型、机器人智能、自然语言处理等。至今已在 ICML,NeuIPS,NAACL 和 AAAI 等顶级国际会议发表论学术论文近 20 篇,其中部分论文有极高的引用率,得到了美国财富杂志 (Fortune Magazine) 和彭博科技 (TechAtBloomberg) 的报道。由于杰出的研究贡献,他获得了彭博数据科学博士奖学金、Jelinke 奖学金以及 Adobe Faculty Award 等项目的资助。

本文中,薛思乔会带大家了解论文《Language Models Can Improve Event Prediction by Few-Shot Abductive Reasoning》的背景和主要研究成果,完整论文可点击阅读原文查看。

背景和动机

商业场景的事件序列(时间序列),通常带有一些文字信息,如图一所示,比如用户购买商品会伴随着文字点评记录,用户申赎基金后也可能会参与社区讨论。

以往我们通常的做法是对这些文字做编码到高纬度空间,然后通过某些方式并入主模型的架构中,然后再输出预测值。有了大语言模型(LLM) 后,我们希望可以直接利用其强大的文字理解和推理能力,来支持序列预测。这个方法更直接,随着LLM 理解能力的突飞猛进,这个方法很可能也更有效。我们在一篇被 NeurIPS'23 接收的文章 Language Model Can Improve Event Prediction by Few-shot Abductive Reasoning 中提出了新的架构 LAMP,实现了这个目标。

0108.1.png

图1:用户购买商品的点评序列示意图

方法

01 整体思路

LLM 的引入类似于推荐里面的检索和精排机制。在 Base model 的预测值基础上,利用 LLM 推理并且从历史序列中检索出 cause events,根据这些事件序列,重新再做一次精排,最终输出预测值。

0108.2.png

图2:整体思路示意图

02 模型架构

LAMP 架构可以分成三个部分:

Event Sequence Model:经典的序列模型,比如点过程模型、时序图谱模型等,对所有预测集合中的预测值(下文中的effect event)做一个打分。

LLM: 给一个 effect event, 推导出他的 cause event。因为LLM 生成的是虚拟的事件,所以要做一个模式匹配(text matching), 然后从真实的数据上找到真实的事件,重新拼成一个序列。

对上一步拼成的序列重新再做一次打分。
0108.3.png

03 Prompt 模版

0108.4.png

04 训练与预测

Event Sequence Model 和 Ranking Model 都是用经典方法单独训练的, LLM 直接调用接口,不做微调。训练与预测的细节见论文。论文原文:https://arxiv.org/abs/2305.16646

05 实验

我们在三个开源数据集,两个是时序图谱数据集 GDELT 和 ICEWS,一个是 推荐系统常用的 Amazon Review 序列数据。我们用Mean Rank 作为指标来衡量模型的性能。从 Base Model 的预测值中取出分数最高的M个,然后对这M个进行重排(第二步和第三步),我们看 ground truth event 的排名会不会更好 (Rank 数值会更低,比如从排名第8 到 排名第 2)。



LLM 我们测试了 GPT-3.0 和 GPT-3.5 两个选择。在消融实验的时候我们也测试了 Llama2,详见文章的实验部分。



从结果来看,不同的 Base Model 和 Ranking Model 组合下,GPT-3.5 都能提升最终的预测性能,GPT-3.0 效果相对一般。开源的 LLM 中 Llama2 也表现较好。

0108.5.png

0108.6.png

更多细节见论文的 section4 以及附录部分。论文原文: https://arxiv.org/abs/2305.16646

结论

我们完成了首个把 LLM 推理能力引入事件序列领域的工作。代码、数据均已经开源,并将集成进开源库 EasyTPP。

EasyTPP GitHub:

https://github.com/ant-research/EasyTemporalPointProcess

相关文章
|
14天前
|
存储 弹性计算 调度
基于Knative的LLM推理场景弹性伸缩方案
Knative的基于请求弹性配置与大语言模型(LLM)的推理场景高度契合。此外,它的资源降配特性可以显著帮助用户降低成本。本文详细介绍基于 Knative 的 LLM 推理场景弹性伸缩方案。
|
24天前
|
人工智能 知识图谱 Docker
KAG:增强 LLM 的专业能力!蚂蚁集团推出专业领域知识增强框架,支持逻辑推理和多跳问答
KAG 是蚂蚁集团推出的专业领域知识服务框架,通过知识增强提升大型语言模型在特定领域的问答性能,支持逻辑推理和多跳事实问答,显著提升推理和问答的准确性和效率。
318 46
KAG:增强 LLM 的专业能力!蚂蚁集团推出专业领域知识增强框架,支持逻辑推理和多跳问答
|
4月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
117 2
|
4月前
|
机器学习/深度学习 自然语言处理 测试技术
CoT神话破灭,并非LLM标配!三大学府机构联手证实,CoT仅在数学符号推理有用
【10月更文挑战第17天】链式思维(CoT)曾被认为是大型语言模型(LLM)激发推理能力的关键方法,但最新研究显示,CoT仅在数学和符号推理任务中有效,其他任务中效果不明显。加州大学伯克利分校、斯坦福大学和卡内基梅隆大学的联合研究打破了CoT作为LLM标配的神话,为重新评估LLM的推理能力提供了新视角。
70 1
|
8天前
|
自然语言处理
Nature:人类亲吻难题彻底难倒LLM,所有大模型全部失败!LLM根本不会推理,只是工具
近期,《自然》杂志发表的研究显示,所有大型语言模型(LLM)在解释特定情境下人类亲吻行为时均失败。尽管LLM在语言处理和文本生成上表现出色,但在理解和推理复杂人类行为方面存在显著限制,表明其缺乏对人类情感、社会及文化背景的深入理解。专家认为LLM更像是工具而非智能体,虽在客户服务、内容创作等领域有价值,但在复杂推理和理解方面仍显不足。
66 37
|
16天前
|
人工智能 数据可视化 开发者
FlowiseAI:34K Star!集成多种模型和100+组件的 LLM 应用低代码开发平台,拖拽组件轻松构建程序
FlowiseAI 是一款开源的低代码工具,通过拖拽可视化组件,用户可以快速构建自定义的 LLM 应用程序,支持多模型集成和记忆功能。
89 14
FlowiseAI:34K Star!集成多种模型和100+组件的 LLM 应用低代码开发平台,拖拽组件轻松构建程序
|
7天前
|
Linux Docker 异构计算
基于Dify +Ollama+ Qwen2 完成本地 LLM 大模型应用实战
尼恩,一位拥有40年经验的老架构师,通过其丰富的行业经验和深入的技术研究,为读者提供了一套系统化、全面化的LLM大模型学习圣经。这套学习资料不仅帮助许多从业者成功转型,还助力多位工程师获得了高薪工作机会。
|
16天前
|
并行计算 API 调度
加速大语言模型推理:NVIDIATensorRT-LLM更新
本次分享由NVIDIA亚太区资深总监李曦鹏主讲,聚焦于加速大语言模型推理的挑战与解决方案。内容涵盖大模型推理优化、性能提升策略及KVCash在用户请求处理中的应用。通过TensorRT-LLM的更新,NVIDIA提供了高性能推理引擎和多种优化技术,如KVCache优化、InflightBatching等,大幅提升了大模型的推理效率。此外,还介绍了与魔搭社区的合作,支持超过50个主流模型的一键部署,显著降低了使用门槛和成本。
|
2月前
|
JSON 人工智能 算法
探索大型语言模型LLM推理全阶段的JSON格式输出限制方法
本篇文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
|
2月前
|
机器学习/深度学习 存储 缓存
ORCA:基于持续批处理的LLM推理性能优化技术详解
大语言模型(LLMs)的批处理优化面临诸多挑战,尤其是由于推理过程的迭代性导致的资源利用不均问题。ORCA系统通过引入迭代级调度和选择性批处理技术,有效解决了这些问题,大幅提高了GPU资源利用率和系统吞吐量,相比FasterTransformer实现了最高37倍的性能提升。
202 26

热门文章

最新文章