Nature:人类亲吻难题彻底难倒LLM,所有大模型全部失败!LLM根本不会推理,只是工具

简介: 近期,《自然》杂志发表的研究显示,所有大型语言模型(LLM)在解释特定情境下人类亲吻行为时均失败。尽管LLM在语言处理和文本生成上表现出色,但在理解和推理复杂人类行为方面存在显著限制,表明其缺乏对人类情感、社会及文化背景的深入理解。专家认为LLM更像是工具而非智能体,虽在客户服务、内容创作等领域有价值,但在复杂推理和理解方面仍显不足。

近期,一项发表在《自然》杂志上的研究表明,当面对一个关于人类亲吻的难题时,所有的大型语言模型(LLM)都遭遇了失败。这一发现引发了关于LLM在理解和推理复杂人类行为方面的能力的讨论。

这个难题是关于两个人之间的亲吻行为。问题要求LLM解释为什么在特定情境下,一个人会亲吻另一个人。这个情境包括两个人的关系、他们的情感状态以及他们所处的环境。

研究中测试了多个知名的LLM,包括GPT-4、Bard和Claude等。然而,这些模型都无法给出令人满意的答案。它们要么给出了错误的解释,要么无法提供任何有意义的回答。

这一发现表明,尽管LLM在处理语言和生成文本方面表现出色,但它们在理解和推理复杂人类行为方面仍存在显著限制。这可能是因为LLM缺乏对人类情感、社会和文化背景的深入理解。

一些专家认为,LLM更像是工具而非智能体。它们可以执行特定的任务,如回答问题或生成文本,但它们缺乏真正的理解和推理能力。这意味着LLM可能无法在需要复杂推理和理解的领域中发挥重要作用。

然而,这并不意味着LLM没有价值。它们在许多领域中已经取得了显著的成功,如客户服务、内容创作和教育等。LLM可以帮助人们更高效地完成任务,并提供有用的信息和建议。

论文地址:https://www.nature.com/articles/s41598-024-79531-8

目录
相关文章
|
12天前
|
存储 弹性计算 调度
基于Knative的LLM推理场景弹性伸缩方案
Knative的基于请求弹性配置与大语言模型(LLM)的推理场景高度契合。此外,它的资源降配特性可以显著帮助用户降低成本。本文详细介绍基于 Knative 的 LLM 推理场景弹性伸缩方案。
|
22天前
|
人工智能 知识图谱 Docker
KAG:增强 LLM 的专业能力!蚂蚁集团推出专业领域知识增强框架,支持逻辑推理和多跳问答
KAG 是蚂蚁集团推出的专业领域知识服务框架,通过知识增强提升大型语言模型在特定领域的问答性能,支持逻辑推理和多跳事实问答,显著提升推理和问答的准确性和效率。
312 46
KAG:增强 LLM 的专业能力!蚂蚁集团推出专业领域知识增强框架,支持逻辑推理和多跳问答
|
5天前
|
Linux Docker 异构计算
基于Dify +Ollama+ Qwen2 完成本地 LLM 大模型应用实战
尼恩,一位拥有40年经验的老架构师,通过其丰富的行业经验和深入的技术研究,为读者提供了一套系统化、全面化的LLM大模型学习圣经。这套学习资料不仅帮助许多从业者成功转型,还助力多位工程师获得了高薪工作机会。
|
3天前
|
人工智能 API Android开发
LLM大模型最新消息2025.01
本文介绍了多个大模型训练和部署工具及教程。使用unsloth支持llama3,显存占用约8G;GPT4ALL加载训练好的大模型;llama.cpp进行4bit量化后可用CPU运行。MAID手机App和MLC软件可在安卓设备上本地运行大模型或调用API。FASTGPT用于客制化大模型和AI私有化客服。相关教程链接已提供。
46 12
|
13天前
|
并行计算 API 调度
加速大语言模型推理:NVIDIATensorRT-LLM更新
本次分享由NVIDIA亚太区资深总监李曦鹏主讲,聚焦于加速大语言模型推理的挑战与解决方案。内容涵盖大模型推理优化、性能提升策略及KVCash在用户请求处理中的应用。通过TensorRT-LLM的更新,NVIDIA提供了高性能推理引擎和多种优化技术,如KVCache优化、InflightBatching等,大幅提升了大模型的推理效率。此外,还介绍了与魔搭社区的合作,支持超过50个主流模型的一键部署,显著降低了使用门槛和成本。
|
1月前
|
JSON 人工智能 算法
探索大型语言模型LLM推理全阶段的JSON格式输出限制方法
本篇文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
|
1月前
|
机器学习/深度学习 存储 缓存
ORCA:基于持续批处理的LLM推理性能优化技术详解
大语言模型(LLMs)的批处理优化面临诸多挑战,尤其是由于推理过程的迭代性导致的资源利用不均问题。ORCA系统通过引入迭代级调度和选择性批处理技术,有效解决了这些问题,大幅提高了GPU资源利用率和系统吞吐量,相比FasterTransformer实现了最高37倍的性能提升。
195 26
|
14天前
|
机器学习/深度学习 人工智能 缓存
基于英特尔平台加速 AI 应用及 LLM 推理性能介绍|龙蜥大讲堂第115期
本文摘自龙蜥大讲堂英特尔 AI 软件工程师黄文欢的分享,主要包括以下三个方面的内容: 1. 第五代英特尔至强处理器 2. LLM 推理加速框架 xFast Transformer 及其优化策略 3. 性能数据及 Demo 展示
|
1月前
|
缓存 自然语言处理 API
Ascend推理组件MindIE LLM
MindIE LLM是基于昇腾硬件的大语言模型推理组件,提供高性能的多并发请求调度与优化技术,如Continuous Batching、PageAttention等,支持Python和C++ API,适用于高效能推理需求。其架构包括深度定制优化的模型模块、文本生成器和任务调度管理器,支持多种模型框架和量化方式,旨在提升大规模语言模型的推理效率和性能。
|
3月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
117 2

热门文章

最新文章