LLM2LLM:LLM2LLM:用 LLM 来增强 LLM !通过教师模型合成数据,增强学生模型的训练数据集

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: LLM2LLM 是一种创新的迭代数据增强技术,通过教师模型生成合成数据,显著提升大语言模型在数据稀缺任务中的性能。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新应用和热点信息,提供开源实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 技术核心:通过教师模型生成合成数据,增强学生模型的训练集。
  2. 迭代优化:通过多次迭代,逐步改进模型性能,针对性地解决模型弱点。
  3. 应用场景:适用于医学、法律、教育等领域,尤其在数据稀缺任务中表现优异。

正文(附运行示例)

LLM2LLM 是什么

公众号: 蚝油菜花 - LLM2LLM

LLM2LLM 是一种创新的迭代数据增强策略,旨在提升大型语言模型(LLM)在数据稀缺情况下的性能。该方法通过一个强大的教师模型生成合成数据,增强学生模型的训练数据集。

具体来说,学生模型首先在有限的种子数据上进行微调,然后教师模型会识别学生模型在预测中的错误,并基于这些错误生成新的合成数据。这些合成数据随后被加入到训练集中,形成一个循环迭代的过程。LLM2LLM 的优势在于能够有效地减少对大规模标注数据的依赖,同时针对性地解决学生模型的弱点,在低数据量任务中显著提高模型的准确性和鲁棒性。

LLM2LLM 的主要功能

  • 数据增强:通过教师模型生成与学生模型预测错误的数据点相似的新数据点,从而增强训练数据集。
  • 迭代学习:该方法通过迭代过程逐步改进模型,每次迭代都针对模型当前表现不佳的数据点进行增强。
  • 针对性强化:专注于增强那些模型预测错误的数据点,而不是盲目地增强所有数据。
  • 质量控制:通过限制使用教师模型生成的数据,防止错误的传播和数据质量的下降。
  • 避免数据膨胀:限制合成数据生成的范围,仅在原始错误答案的基础上进行增强,避免数据膨胀。

LLM2LLM 的技术原理

  • 初始微调:首先,在一个小规模的种子数据集上对学生模型进行初步微调,让学生模型具备一定的基础能力。
  • 性能评估与错误提取:评估学生模型的表现,识别出模型在哪些方面存在不足,并筛选出模型预测错误的数据点。
  • 合成数据生成:基于评估结果,教师模型会生成新的、针对性的训练数据,专门设计用来解决学生模型的弱点。
  • 迭代优化:将新生成的数据加入到现有数据集中,重新训练学生模型,通过多次迭代逐步提升模型性能。

如何运行 LLM2LLM

1. 下载 LLaMA-2-7B 模型和数据集

首先,下载 LLaMA-2-7B 模型和相应的数据集。

2. 克隆 GSM8K 数据集

运行以下命令克隆 GSM8K 数据集:

cd GSM8K
git clone https://github.com/openai/grade-school-math.git

3. 生成种子数据

运行 generate_seed_data.py 脚本,并调整 SUBSAMPLE_SPLIT 参数以获取种子数据。

4. 配置 config.yaml

确保 config.yaml 文件中的所有设置准确无误。

5. 运行数据生成脚本

运行以下命令生成数据:

python GSM8K/generator_data.py GSM8K/config.yaml

6. 运行实验

进入实验文件夹并运行以下命令:

./run_all.sh

7. 生成结果报告

在所有迭代完成后,运行以下命令生成详细的性能报告:

python report_results.py --results_file_name test_0.jsonl GSM8K/grade-school-math/grade_school_math/data/test.jsonl $EXP_FOLDER

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新应用和热点信息,提供开源实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
6天前
|
机器学习/深度学习 人工智能 计算机视觉
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
MILS 是 Meta AI 推出的零样本生成高质量多模态描述方法,支持图像、视频和音频的描述生成,无需额外训练。
89 34
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
|
4天前
|
存储 Kubernetes 测试技术
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
本教程演示如何在ACK中使用vLLM框架快速部署DeepSeek R1模型推理服务。
|
18天前
|
自然语言处理 算法 JavaScript
面向长文本的多模型协作摘要架构:多LLM文本摘要方法
多LLM摘要框架通过生成和评估两个步骤处理长文档,支持集中式和分散式两种策略。每个LLM独立生成文本摘要,集中式方法由单一LLM评估并选择最佳摘要,而分散式方法则由多个LLM共同评估,达成共识。论文提出两阶段流程:先分块摘要,再汇总生成最终摘要。实验结果显示,多LLM框架显著优于单LLM基准,性能提升最高达3倍,且仅需少量LLM和一轮生成评估即可获得显著效果。
54 10
面向长文本的多模型协作摘要架构:多LLM文本摘要方法
|
20天前
|
机器学习/深度学习 人工智能 NoSQL
记忆层增强的 Transformer 架构:通过可训练键值存储提升 LLM 性能的创新方法
Meta研究团队开发的记忆层技术通过替换Transformer中的前馈网络(FFN),显著提升了大语言模型的性能。记忆层使用可训练的固定键值对,规模达百万级别,仅计算最相似的前k个键值,优化了计算效率。实验显示,记忆层使模型在事实准确性上提升超100%,且在代码生成和通用知识领域表现优异,媲美4倍计算资源训练的传统模型。这一创新对下一代AI架构的发展具有重要意义。
43 11
记忆层增强的 Transformer 架构:通过可训练键值存储提升 LLM 性能的创新方法
|
27天前
|
人工智能 数据可视化 开发者
FlowiseAI:34K Star!集成多种模型和100+组件的 LLM 应用低代码开发平台,拖拽组件轻松构建程序
FlowiseAI 是一款开源的低代码工具,通过拖拽可视化组件,用户可以快速构建自定义的 LLM 应用程序,支持多模型集成和记忆功能。
109 14
FlowiseAI:34K Star!集成多种模型和100+组件的 LLM 应用低代码开发平台,拖拽组件轻松构建程序
|
4天前
|
人工智能
RAG没有银弹!四级难度,最新综述覆盖数据集、解决方案,教你LLM+外部数据的正确使用姿势
在人工智能领域,大型语言模型(LLM)结合外部数据展现出强大能力,尤其检索增强生成(RAG)和微调技术备受关注。然而,不同专业领域的有效部署仍面临挑战,如准确检索数据、理解用户意图等。综述文章《Retrieval Augmented Generation (RAG) and Beyond》提出RAG任务分类方法,将用户查询分为四个级别,并探讨了外部数据集成的三种形式:上下文、小型模型和微调。文章提供了宝贵见解和实用指导,帮助更好地利用LLM潜力解决实际问题。论文链接:https://arxiv.org/abs/2409.14924
35 6
|
4天前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
462 13
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
4月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
127 2
|
4月前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
19天前
|
自然语言处理
Nature:人类亲吻难题彻底难倒LLM,所有大模型全部失败!LLM根本不会推理,只是工具
近期,《自然》杂志发表的研究显示,所有大型语言模型(LLM)在解释特定情境下人类亲吻行为时均失败。尽管LLM在语言处理和文本生成上表现出色,但在理解和推理复杂人类行为方面存在显著限制,表明其缺乏对人类情感、社会及文化背景的深入理解。专家认为LLM更像是工具而非智能体,虽在客户服务、内容创作等领域有价值,但在复杂推理和理解方面仍显不足。
79 37

热门文章

最新文章