AI 容器镜像部署 Stable Diffusion

本文涉及的产品
无影云电脑个人版,1个月黄金款+200核时
无影云电脑企业版,4核8GB 120小时 1个月
资源编排,不限时长
简介: 本文将基于阿里云 AMD 服务器和龙蜥 AI 容器服务,快速搭建出个人版文生图服务

背景介绍

Stable Diffusion 是于 2022 年发布的文本到图像的潜在扩散模型,它可以根据文本提示词产生对应的图像。Stable Diffusion 模型是扩散模型的变种,可以通过逐步对随机高斯噪声进行去噪以获得感兴趣的样本。与传统生成模型相比,Stable Diffusion 可以在不需要复杂训练过程或大量数据集的情况下生成出真实感强、细节丰富的图像。目前该项目已经应用于多种场景,包括计算机视觉、数字艺术、视频游戏等领域。

本文将基于阿里云 AMD 服务器和龙蜥 AI 容器服务,快速搭建出个人版文生图服务。

创建 ECS 实例

创建 ECS 实例时需要根据模型的大小对实例规格进行选择。由于整个模型的推理过程需要耗费大量的计算资源,运行时内存占用大量内存,为了保证模型运行的稳定,实例规格选择 ecs.g8a.16xlarge。同时,Stable Diffusion 的运行需要下载多个模型文件,会占用大量存储空间,在创建实例时,存储盘至少分配 100 GB。最后,为了保证环境安装以及模型下载的速度,实例带宽分配 100 Mbps。

实例操作系统选择 Alibaba Cloud Linux 3.2104 LTS 64 位。

创建 Docker 运行环境

安装 Docker

在 Alibaba Cloud Linux 3 上安装 Docker 可以参考 安装Docker并使用(Linux)。安装完成后请确保 Docker 守护进程已经启用。

systemctl status docker

创建并运行 PyTorch AI 容器

龙蜥社区提供了丰富的基于 Anolis OS 的容器镜像,其中就包括针对 AMD 优化的 PyTorch 镜像,可以使用该镜像直接创建一个 PyTorch 运行环境。

docker pull registry.openanolis.cn/openanolis/pytorch-amd:1.13.1-23-zendnn4.1
docker run -d -it --name pytorch-amd --net host -v $HOME:/root registry.openanolis.cn/openanolis/pytorch-amd:1.13.1-23-zendnn4.1

以上命令首先拉取容器镜像,随后使用该镜像创建一个以分离模式运行的,名为pytorch-amd的容器,并将用户的家目录映射到容器中,以保留开发内容。

手动部署流程

进入容器环境

PyTorch 容器创建运行后,使用以下命令进入容器环境。

docker exec -it -w /root pytorch-amd /bin/bash

后续命令需在容器环境中执行,如意外退出,请使用以上命令重新进入容器环境。如需查看当前环境是否为容器,可以使用以下命令查询。

cat /proc/1/cgroup | grep docker
# 有回显信息则为容器环境

软件安装配置

在部署 Stable Diffusion 之前,需要安装一些必备软件。

yum install -y git git-lfs wget mesa-libGL gperftools-libs

后续下载预训练模型需要启用 Git LFS 的支持。

git lfs install

下载源码与预训练模型

下载 Stable Diffusion web UI 的源码。

git clone -b v1.5.2 https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

Stable Diffusion web UI 在部署过程中需要克隆多个代码仓库,由于克隆过程受到网络波动,可能会出现失败。

mkdir stable-diffusion-webui/repositories && cd $_
git clone https://github.com/Stability-AI/stablediffusion.git stable-diffusion-stability-ai
git clone https://github.com/Stability-AI/generative-models.git generative-models
git clone https://github.com/crowsonkb/k-diffusion.git k-diffusion
git clone https://github.com/sczhou/CodeFormer.git CodeFormer
git clone https://github.com/salesforce/BLIP.git BLIP

所有代码仓库克隆成功后,需要将各代码仓库切换到指定分支,以保证生成结果的稳定。

git -C stable-diffusion-stability-ai checkout cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf
git -C generative-models checkout 5c10deee76adad0032b412294130090932317a87
git -C k-diffusion checkout c9fe758757e022f05ca5a53fa8fac28889e4f1cf
git -C CodeFormer checkout c5b4593074ba6214284d6acd5f1719b6c5d739af
git -C BLIP checkout 48211a1594f1321b00f14c9f7a5b4813144b2fb9

在 Stable Diffusion 运行时,需要使用到预训练模型,由于模型文件较大(约 11G),这里将手动下载预训练模型。

cd ~ && mkdir -p stable-diffusion-webui/models/Stable-diffusion
wget "https://www.modelscope.cn/api/v1/models/AI-ModelScope/stable-diffusion-v1-5/repo?Revision=master&FilePath=v1-5-pruned-emaonly.safetensors" -O stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.safetensors
mkdir -p ~/stable-diffusion-webui/models/clip
git clone --depth=1 https://gitee.com/modelee/clip-vit-large-patch14.git ~/stable-diffusion-webui/models/clip/clip-vit-large-patch14

由于 Stable Diffusion 运行时需要从 HuggingFace 下载 ViT 多模态模型,由于该模型已经使用国内镜像下载,需要修改脚本文件直接从本地调用该模型。

sed -i "s?openai/clip-vit-large-patch14?${HOME}/stable-diffusion-webui/models/clip/clip-vit-large-patch14?g" ~/stable-diffusion-webui/repositories/stable-diffusion-stability-ai/ldm/modules/encoders/modules.py

部署运行环境

在部署 Python 环境之前,可以更换 pip 下载源,加快依赖包的下载速度。

mkdir -p ~/.config/pip && cat > ~/.config/pip/pip.conf <<EOF
[global]
index-url=http://mirrors.cloud.aliyuncs.com/pypi/simple/
[install]
trusted-host=mirrors.cloud.aliyuncs.com
EOF

安装 Python 运行依赖。

pip install cython gfpgan open-clip-torch==2.8.0 httpx==0.24.1
pip install git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1

为了保证 ZenDNN 可以完全释放 CPU 算力,需要设置两个环境变量:OMP_NUM_THREADSGOMP_CPU_AFFINITY

cat > /etc/profile.d/env.sh <<EOF
export OMP_NUM_THREADS=\$(nproc --all)
export GOMP_CPU_AFFINITY=0-\$(( \$(nproc --all) - 1 ))
EOF
source /etc/profile

最后运行脚本自动化部署 Stable Diffusion 的运行环境。

cd ~/stable-diffusion-webui
venv_dir="-" ./webui.sh -f --skip-torch-cuda-test --exit

运行网页版 Demo

在项目源码中提供了网页版 Demo,可以用来和 Stable Diffusion 进行实时交互。

export LD_PRELOAD=/usr/lib64/libtcmalloc.so.4
export venv_dir="-" 
python3 launch.py -f --skip-torch-cuda-test --skip-version-check --no-half --precision full --use-cpu all --listen

部署完成后可以通过 http://<ECS 公网 IP>:7860 来访问服务。

image.png

相关实践学习
通过容器镜像仓库与容器服务快速部署spring-hello应用
本教程主要讲述如何将本地Java代码程序上传并在云端以容器化的构建、传输和运行。
Kubernetes极速入门
Kubernetes(K8S)是Google在2014年发布的一个开源项目,用于自动化容器化应用程序的部署、扩展和管理。Kubernetes通常结合docker容器工作,并且整合多个运行着docker容器的主机集群。 本课程从Kubernetes的简介、功能、架构,集群的概念、工具及部署等各个方面进行了详细的讲解及展示,通过对本课程的学习,可以对Kubernetes有一个较为全面的认识,并初步掌握Kubernetes相关的安装部署及使用技巧。本课程由黑马程序员提供。 &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情:&nbsp;https://www.aliyun.com/product/kubernetes
相关文章
|
2月前
|
人工智能 运维 Kubernetes
阿里云容器服务AI助手2.0 - 新一代容器智能运维能力
2024年11月,阿里云容器服务团队进一步深度融合现有运维可观测体系,在场景上覆盖了K8s用户的全生命周期,正式推出升级版AI助手2.0,旨在更好地为用户使用和运维K8S保驾护航。
|
2月前
|
Ubuntu Linux 开发工具
docker 是什么?docker初认识之如何部署docker-优雅草后续将会把产品发布部署至docker容器中-因此会出相关系列文章-优雅草央千澈
Docker 是一个开源的容器化平台,允许开发者将应用程序及其依赖项打包成标准化单元(容器),确保在任何支持 Docker 的操作系统上一致运行。容器共享主机内核,提供轻量级、高效的执行环境。本文介绍如何在 Ubuntu 上安装 Docker,并通过简单步骤验证安装成功。后续文章将探讨使用 Docker 部署开源项目。优雅草央千澈 源、安装 Docker 包、验证安装 - 适用场景:开发、测试、生产环境 通过以上步骤,您可以在 Ubuntu 系统上成功安装并运行 Docker,为后续的应用部署打下基础。
docker 是什么?docker初认识之如何部署docker-优雅草后续将会把产品发布部署至docker容器中-因此会出相关系列文章-优雅草央千澈
|
16天前
|
人工智能 弹性计算 JSON
AI大模型复习“搭子”—部署流程演示
本文主要介绍文档智能,介绍利用大模型构建知识库和AI学习助手的部署流程,主要包括以下几方面的内容: 1.什么是文档智能 2.文档智能 & RAG 3.基于文档智能和百炼平台的RAG应用案例
|
25天前
|
人工智能 物联网
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
62 10
|
2月前
|
人工智能 数据库连接 API
在部署《主动式智能导购 AI 助手构建》解决方案的过程中,整体体验还是相对顺畅的,但确实遇到了一些问题,文档提供的引导也有所不足,以下是详细的体验评估
在部署《主动式智能导购 AI 助手构建》解决方案的过程中,整体体验还是相对顺畅的,但确实遇到了一些问题,文档提供的引导也有所不足,以下是详细的体验评估
|
25天前
|
存储 人工智能 Serverless
7分钟玩转 AI 应用,函数计算一键部署 AI 生图大模型
人工智能生成图像(AI 生图)的领域中,Stable Diffusion WebUI 以其强大的算法和稳定的输出质量而闻名。它能够快速地从文本描述中生成高质量的图像,为用户提供了一个直观且高效的创作平台。而 ComfyUI 则以其用户友好的界面和高度定制化的选项所受到欢迎。ComfyUI 的灵活性和直观性使得即使是没有技术背景的用户也能轻松上手。本次技术解决方案通过函数计算一键部署热门 AI 生图大模型,凭借其按量付费、卓越弹性、快速交付能力的特点,完美实现低成本,免运维。
|
2月前
|
人工智能 API Windows
免费部署本地AI大语言模型聊天系统:Chatbox AI + 马斯克grok2.0大模型(简单5步实现,免费且比GPT4.0更好用)
本文介绍了如何部署本地AI大语言模型聊天系统,使用Chatbox AI客户端应用和Grok-beta大模型。通过获取API密钥、下载并安装Chatbox AI、配置模型,最终实现高效、智能的聊天体验。Grok 2大模型由马斯克X-AI发布,支持超长文本上下文理解,免费且易于使用。
355 0
|
2月前
|
监控 NoSQL 时序数据库
《docker高级篇(大厂进阶):7.Docker容器监控之CAdvisor+InfluxDB+Granfana》包括:原生命令、是什么、compose容器编排,一套带走
《docker高级篇(大厂进阶):7.Docker容器监控之CAdvisor+InfluxDB+Granfana》包括:原生命令、是什么、compose容器编排,一套带走
275 78
|
23天前
|
Ubuntu NoSQL Linux
《docker基础篇:3.Docker常用命令》包括帮助启动类命令、镜像命令、有镜像才能创建容器,这是根本前提(下载一个CentOS或者ubuntu镜像演示)、容器命令、小总结
《docker基础篇:3.Docker常用命令》包括帮助启动类命令、镜像命令、有镜像才能创建容器,这是根本前提(下载一个CentOS或者ubuntu镜像演示)、容器命令、小总结
108 6
《docker基础篇:3.Docker常用命令》包括帮助启动类命令、镜像命令、有镜像才能创建容器,这是根本前提(下载一个CentOS或者ubuntu镜像演示)、容器命令、小总结