Dinky是一个基于Apache Flink的数据集成工具

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Dinky是一个基于Apache Flink的数据集成工具

Dinky是一个基于Apache Flink的数据集成工具,它可以帮助你将数据从源系统移动到目标系统。然而,Dinky本身并不直接支持Flink SQL Sink,因为它主要关注的是数据的抽取和转换,而不是数据的写入。

如果你想要使用Dinky将数据写入到Flink SQL中,你可能需要使用Dinky的"toFlink"功能,它将数据转换为Flink DataStream,然后你可以使用Flink DataStream API将数据写入到Flink SQL中。

以下是一个基本的示例:

from dinky import Dinky
import pyflink as flink

# 创建一个Dinky实例
dinky = Dinky()

# 创建一个Flink执行环境
env = flink.execution_mode(mode='local', parallelism=1)

# 创建一个Flink DataStream
ds = env.from_collection('my_source', type_info=types.TupleTypeInfo(types.StringTypeInfo(), types.IntegerTypeInfo()))

# 使用Dinky将数据转换为Flink DataStream
converted_ds = dinky.to_flink(ds)

# 将数据写入到Flink SQL
sink_config = {
   'connector': 'filesystem', 'path': 'file:///tmp/output'}
converted_ds.sink(sink_config).name('my_sink').execute()

在这个示例中,我们首先创建了一个Dinky实例和一个Flink执行环境。然后,我们创建了一个Flink DataStream,并使用Dinky将其转换为另一个Flink DataStream。最后,我们将转换后的数据写入到Flink SQL。

请注意,这只是一个基本的示例,你可能需要根据你的具体需求进行修改。

目录
相关文章
|
26天前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
313 33
The Past, Present and Future of Apache Flink
|
3月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
902 13
Apache Flink 2.0-preview released
|
3月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
116 3
|
4月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。
|
5月前
|
消息中间件 监控 数据挖掘
基于RabbitMQ与Apache Flink构建实时分析系统
【8月更文第28天】本文将介绍如何利用RabbitMQ作为数据源,结合Apache Flink进行实时数据分析。我们将构建一个简单的实时分析系统,该系统能够接收来自不同来源的数据,对数据进行实时处理,并将结果输出到另一个队列或存储系统中。
316 2
|
5月前
|
消息中间件 运维 Kafka
Apache Flink 实践问题之达到网卡的最大速度如何解决
Apache Flink 实践问题之达到网卡的最大速度如何解决
60 2
|
5月前
|
分布式计算 DataWorks 关系型数据库
MaxCompute 生态系统中的数据集成工具
【8月更文第31天】在大数据时代,数据集成对于构建高效的数据处理流水线至关重要。阿里云的 MaxCompute 是一个用于处理大规模数据集的服务平台,它提供了强大的计算能力和丰富的生态系统工具来帮助用户管理和处理数据。本文将详细介绍如何使用 DataWorks 这样的工具将 MaxCompute 整合到整个数据处理流程中,以便更有效地管理数据生命周期。
168 0
|
2月前
|
消息中间件 Java Kafka
什么是Apache Kafka?如何将其与Spring Boot集成?
什么是Apache Kafka?如何将其与Spring Boot集成?
75 5
|
2月前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
59 1
|
4月前
|
消息中间件 资源调度 API
Apache Flink 流批融合技术介绍
本文源自阿里云高级研发工程师周云峰在Apache Asia Community OverCode 2024的分享,内容涵盖从“流批一体”到“流批融合”的演进、技术解决方案及社区进展。流批一体已在API、算子和引擎层面实现统一,但用户仍需手动配置作业模式。流批融合旨在通过动态调整优化策略,自动适应不同场景需求。文章详细介绍了如何通过量化指标(如isProcessingBacklog和isInsertOnly)实现这一目标,并展示了针对不同场景的具体优化措施。此外,还概述了社区当前进展及未来规划,包括将优化方案推向Flink社区、动态调整算子流程结构等。
444 31
Apache Flink 流批融合技术介绍

推荐镜像

更多