倚天性能优化—YCL AI计算库在resnet50上的优化

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: Yitian710 作为平头哥第一代ARM通用芯片,在AI场景与X86相比,软件生态与推理性能都存在一定的短板,本文旨在通过倚天AI计算库的优化,打造适合ARM架构的软件平台,提升倚天性能

1. 背景介绍

   英特尔第四代至强可扩展处理器(代号Sapphire Rapids,简称SPR)上引入了全新的加速引擎AMXAdvanced Matrix Extensions),通过指令集层面的支持来显著加速深度学习算法中的Tensor计算。AMX针对广泛的硬件和软件优化,进一步增强了前一代矢量神经网络指令VNNIBF16,推出了AMX_INT8AMX_BF16指令,从一维向量计算发展到二维矩阵计算,最大限度的利用计算资源。由于神经网络训练推理涉及大量的矩阵运算,AMX的引入将大幅提高AI性能。

   2022年的云栖大会上,阿里云推出了搭载倚天710芯片的ECS服务器,受到了业界的广泛关注。该服务器CPU芯片基于ARM Neoverse N2架构,支持ARM v9 指令集,最高支持128核。业界权威性能报告指出,其并行计算能力在CPU服务器中非常抢眼,并且极具性价比,有潜力作为昂贵的GPU服务器的替代品。然而,Yitian710 作为平头哥第一代ARM通用芯片,在AI场景与X86相比,软件生态与推理性能都存在一定的短板,本文旨在通过倚天AI计算库的优化,打造适合ARM架构的软件平台,提升倚天性能。

1.1 问题

   倚天710目前主要依赖开源社区提供对AI场景的软件支持,存在以下几个问题:

1)目前主流AI软件生态对X86架构适配更好,各种推理场景性能表现更优,倚天缺乏相关的软件生态,推广依靠具体业务场景定制优化与ARM生态支持,效率低下

2)倚天SIMD位宽受限,与X86 ICLSPR相比有较大劣势,需要任务调度充分发挥倚天物理核算力优势

3ARM AI生态演进考虑不同架构兼容,迭代速度慢,且缺乏倚天微架构针对性调优,不利于充分发挥倚天在AI场景优势



1.2 策略

   YCLYiTian Compute Library)为平头哥数据中心解决方案团队开发的一款高性能AI计算库,该库基于ARM开源的ACL(ARM Compute Library)实现。ACL是一个用于机器学习和计算机视觉的高性能 C++ 库。它提供了一系列优化的算法和操作,可在 ARM CPUGPU DSP 上执行。YCLACL的基础上,针对倚天硬件架构的特性,做了深入的适配与优化,通过调度算法优化、GEMM拆分、底层算子融合、BF16精度优化等方法,实现包括CoreSupportGraphBackends等不同层次模块的性能优化,并通过oneDNN标准接口对接上层推理框架如tensorflowpytorch,实现上层计算任务不感知。经测试,集成优化版本的tensorlfowmlperf resnet50评测中性能提升超过40%,目前该版本已集成到cap2自动化测试系统。



2. YCL计算库架构

   自Tensorflow 2.5版本开始,已经有了对 oneDNN 的实验性支持,此后ARM开源社区在oneDNNbackend增加了ARM实现,来加速 AArch64 CPU 的性能如下图1所示,Tensorflow framework 将上层的计算任务分解成各个算子,调用底层实现以提升性能。Tensorflow默认调用Eigen实现各算子如GEMMIntel提供oneDNN加速库用于实现基于X86 backendkernel实现,对于arm backendoneDNN调用ACL来使用ARM向量指令以提升性能。YCL即为 arm backend替代ACL的计算库,专门针对倚天SoC架构特性做出优化。

image.png

1 YCL计算库在tensorflow中的位置

image.png

2 YCL计算库架构

   YCL在框架架构上与ACL基本相同,如图2所示,绿色部分为倚天710软件架构,接口层实现了常用的AI算子,在使用每个算子之前通过配置(configure)接口设置输入数据、数据类型、计算模式、算子评估、权重数据packing、调度方法等,配置完成即可启动运算过程(run),该过程首先将计算任务划分成子任务,并为不同子任务分配线程并发计算,最后各线程调用计算kernel完成各自计算任务,主线程合并计算结果完成最终的计算。



3. 优化方法

本文从以下4个方面针对倚天架构做优化:

3.1 子任务划分,利用倚天710各级cache提升数据吞吐

image.png

3 YCL中矩阵运算子任务划分

   矩阵运算(GEMM)一般为当前AI推理任务中的主要计算来源,很多加速库也是重点优化提升GEMM计算性能。当前学术上提升在CPU上提升GEMM性能的主要思路为:将A矩阵在M方向划分为宽度为Lvh的子块,将B矩阵在N方向上划分宽度为Lvw的子块,然后根据L1 cache大小确定K方向(Kc)的值,然后确定每个子块计算顺序,使用多核完成计算。



   YCL子子任务划分也采用上述方法,但是在设计子任务是考虑倚天Cache结构与物理核优势,首先根据分配的倚天core数与任务大小,确定最终分配的线程数,如果计算任务较小,则考虑少分配线程数n,可以降低线程调度产生的开销。然后根据任务大小与计算单元缓存确定子任务数,原则是划分后的子任务可以一次性存入缓存,提升数据存取速度;然后如图3所示,将矩阵AB分别划分成Akj(Lvh x kc), Bki(kc x Lvw)子矩阵,每个线程分别计算Ck=Akj x Bki ,通过调节倚天SIMD寄存器布局,降低数据重复访问,获得最优性能。

3.2 任务调度

   设计两级线程与子任务对应表,如图4所示,其中level 0子任务平均分配到各线程上执行,level 1为多余的子任务首先缓存在buffer中,等到有线程空闲时执行。该方法有三个好处,第一,子任务划分利用了多核系统缓存,子任务在单核中执行效率最高;第二,线程与任务对应,充分利用线程资源,先完成的线程继续执行level 1子任务,减少线程长尾效应影响;第三,各子任务在整体任务中数据连续存储,提升cache命中率。

3.3 底层算子融合

   在tensorflow中有大量的eltwise计算,然后结果输入激活函数的操作,该部分在独立计算,不依赖其他操作,可以在底层将eltwise计算的中间结果保存在寄存器中,然后紧接中做ACT,以eltwise(sum) + ReLU为例,可以在oneDNNYCL中将这部分功能合并,如下图4所示。

image.png

4 底层算子融合





3.4 BF16算子计算

   倚天710采用armv9架构,指令集支持bfloat16矩阵计算,单个bfmmla指令可以计算一个2x2大小的矩阵,理论性能相比float指令可以提升4倍,下表为倚天710不同精度下指令的理论算力。因此,使用BF16指令可以在保证精度的前提下大幅提升性能。

image.png

   YCL计算库在不改变tensoflow框架的前提下,实现了从floatbfloat的简单切换。在oneDNN层面,将卷积算子做了改造,首先将输入tensor配置为bfloat16格式然后将输入数据从float格式转换成bfloat16格式数据,改转化可能会有overhead,最终实现采用simd 汇编实现,将转换完成的数据导入oneDNN原始的memory中,并释放临时buffer



3.5 性能评估

   倚天710单个SoC128core,且都是物理核,有独立的L1L2cache,我们使用阿里云ecs.c8y.8xlarge来测试YCL计算库的性能,为了充分发挥倚天物理核算力,测试采用MLperf resnet 0ffline模式将CPU压力打到最大,测试开启BF16,具体测试命令为:

./run_local.sh tf resnet50 cpu --scenario Offline

其中g8iintel SPR实例,其tensorflow安装方式与python依赖如下(通过pip install tensorflow==2.11.0安装)

image.png

使能BF16方法如下:

export DNNL_VERBOSE=1

export TF_ENABLE_ONEDNN_OPTS=1

export ONEDNN_DEFAULT_FPMATH_MODE=BF16

运行benchmark,查看log,如果存在avx512_core_amx_bf16,代表使能AMX_BF16来加速矩阵运算

测试均在32c下进行,如下图5所示,使用优化后的YCL计算库resnet50性能提升45%

image.png

5 倚天710 resnet50优化前后性能对比



4. 安装与使用方法

   目前YCL计算库已经适配了tensorflow 1.152.9两个版本,通过打patch方式支持tensorflow源码编译安装,相关的编译与集成方式可以参考《倚天AI实践》该部分在后续文章中发出。

相关文章
|
15天前
|
人工智能 开发框架 安全
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
Smolagents 是 Hugging Face 推出的轻量级开源库,旨在简化智能代理的构建过程,支持多种大语言模型集成和代码执行代理功能。
241 69
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
|
15天前
|
人工智能 编解码 搜索推荐
深度测评-主动式智能导购 AI 助手构建的实现与优化
本文深度测评某平台提供的函数计算应用模板,用于快速搭建集成智能导购的电商网站。通过简洁直观的创建与部署流程,用户只需填写API Key等基本信息,即可完成配置。智能导购AI助手能通过多轮对话引导顾客明确需求,精准推荐商品,提升购物体验和转化率。系统支持自定义设置,具备高效、个性化、灵活扩展的特点。未来可引入更多维度推荐、机器学习及语音识别技术,进一步优化导购效果。
100 15
深度测评-主动式智能导购 AI 助手构建的实现与优化
|
12天前
|
人工智能 自然语言处理 监控
从数据洞察到动态优化:SaaS+AI引领智能化服务新时代
SaaS(软件即服务)结合AI(人工智能),正引领企业解决方案向智能化转型。SaaS+AI大幅提升了工作效率与决策质量。它能自动完成重复任务、简化设置流程、主动识别并解决潜在问题,还能根据用户需求提供个性化推荐和动态优化配置。
61 1
从数据洞察到动态优化:SaaS+AI引领智能化服务新时代
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与情感计算:AI如何理解人类情感
人工智能与情感计算:AI如何理解人类情感
95 20
|
5天前
|
人工智能 运维 Serverless
云端问道8期方案教学-基于Serverless计算快速构建AI应用开发
本文介绍了基于Serverless计算快速构建AI应用开发的技术和实践。内容涵盖四个方面:1) Serverless技术价值,包括其发展趋势和优势;2) Serverless函数计算与AI的结合,探讨AIGC应用场景及企业面临的挑战;3) Serverless函数计算AIGC应用方案,提供一键部署、模型托管等功能;4) 业务初期如何低门槛使用,介绍新用户免费额度和优惠活动。通过这些内容,帮助企业和开发者更高效地利用Serverless架构进行AI应用开发。
|
17天前
|
人工智能 数据处理 C#
AI Dev Gallery:微软开源 Windows AI 模型本地运行工具包和示例库,助理开发者快速集成 AI 功能
微软推出的AI Dev Gallery,为Windows开发者提供开源AI工具包和示例库,支持本地运行AI模型,提升开发效率。
64 13
|
18天前
|
SQL 人工智能 关系型数据库
PolarDB-PG AI最佳实践 2 :PolarDB AI X EAS实现自定义库内模型推理最佳实践
PolarDB通过POLAR_AI插件支持使用SQL调用AI/ML模型,无需专业AI知识或额外部署环境。结合阿里云EAS在线模型服务,可轻松部署自定义模型,在SQL中实现如文本翻译等功能。
|
18天前
|
存储 人工智能 运维
面向AI的服务器计算软硬件架构实践和创新
阿里云在新一代通用计算服务器设计中,针对处理器核心数迅速增长(2024年超100核)、超多核心带来的业务和硬件挑战、网络IO与CPU性能增速不匹配、服务器物理机型复杂等问题,推出了磐久F系列通用计算服务器。该系列服务器采用单路设计减少爆炸半径,优化散热支持600瓦TDP,并实现CIPU节点比例灵活配比及部件模块化可插拔设计,提升运维效率和客户响应速度。此外,还介绍了面向AI的服务器架构挑战与软硬件结合创新,包括内存墙问题、板级工程能力挑战以及AI Infra 2.0服务器的开放架构特点。最后,探讨了大模型高效推理中的显存优化和量化压缩技术,旨在降低部署成本并提高系统效率。
|
18天前
|
存储 人工智能 芯片
面向AI的服务器计算互连的创新探索
面向AI的服务器计算互连创新探索主要涵盖三个方向:Scale UP互连、AI高性能网卡及CIPU技术。Scale UP互连通过ALink系统实现极致性能,支持大规模模型训练,满足智算集群需求。AI高性能网卡针对大规模GPU通信和存储挑战,自研EIC网卡提供400G带宽和RDMA卸载加速,优化网络传输。CIPU作为云基础设施核心,支持虚拟化、存储与网络资源池化,提升资源利用率和稳定性,未来将扩展至2*800G带宽,全面覆盖阿里云业务需求。这些技术共同推动了AI计算的高效互联与性能突破。
|
4天前
|
人工智能 运维 物联网
云大使 X 函数计算 FC 专属活动上线!享返佣,一键打造 AI 应用
如今,AI 技术已经成为推动业务创新和增长的重要力量。但对于许多企业和开发者来说,如何高效、便捷地部署和管理 AI 应用仍然是一个挑战。阿里云函数计算 FC 以其免运维的特点,大大降低了 AI 应用部署的复杂性。用户无需担心底层资源的管理和运维问题,可以专注于应用的创新和开发,并且用户可以通过一键部署功能,迅速将 AI 大模型部署到云端,实现快速上线和迭代。函数计算目前推出了多种规格的云资源优惠套餐,用户可以根据实际需求灵活选择。