【MATLAB第52期】基于MATLAB的高斯过程GPR超参数(sigma)自动优化算法 时间序列预测模型 五折交叉验证

简介: 使用GPR自动优化函数,对sigma进行自动寻优。一列时间序列数据 ,滑动窗口尺寸为15。适应度值log(1+loss)。

一、效果展示

2023-07-06_202404.png
2023-07-06_202417.png
2023-07-06_202320.png
2023-07-06_202329.png

二、优化思路

1.数据
一列时间序列数据 ,滑动窗口尺寸为15。
2.思路
使用GPR自动优化函数,对sigma进行自动寻优。
适应度值log(1+loss)。
迭代次数默认30.

三、代码展示

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  构造数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%%  划分训练集和测试集
temp = 1: 1: 922;

P_train = res(temp(1: 700), 1: 15)';
T_train = res(temp(1: 700), 16)';
M = size(P_train, 2);

P_test = res(temp(701: end), 1: 15)';
T_test = res(temp(701: end), 16)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%训练模型  这个是模型参数 ,运行较好地结果 
gprMdl= fitrgp(p_train,t_train,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',...
     struct('Optimizer','randomsearch'));%训练高斯过程模型 HyperparameterOptimizationOptions 五折交叉验证自动优化超参数sigma

%gprMdl = fitrgp(p_train,t_train,'Basis','None','KernelFunction','Exponential');
[t_sim1] = gprpre(gprMdl);
T_sim1=mapminmax('reverse',t_sim1, ps_output);%训练集拟合结果

[t_sim2,~,~] = predict(gprMdl,p_test);
T_sim2=mapminmax('reverse',t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);

%%  绘图
figure()
subplot(211)
plot(1: M, T_train, 'r-', 1: M, T_sim1, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化后训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

subplot(212)
plot(1: N, T_test, 'r-', 1: N, T_sim2, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化后测试集预测结果对比';['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2')^2 / norm(T_test -  mean(T_test ))^2;

disp(['优化后训练集数据的R2为:', num2str(R1)])
disp(['优化后测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['优化后训练集数据的MAE为:', num2str(mae1)])
disp(['优化后测试集数据的MAE为:', num2str(mae2)])

%  MBE
mbe1 = sum(T_sim1' - T_train) ./ M ;
mbe2 = sum(T_sim2' - T_test ) ./ N ;

disp(['优化后训练集数据的MBE为:', num2str(mbe1)])
disp(['优化后测试集数据的MBE为:', num2str(mbe2)])

%% 优化前 Sigma = 0.5
%gprMdl1 = fitrgp(p_train,t_train,'Basis','None','KernelFunction','Exponential');
[t_sim11] = gprpre(gprMdl1);
T_sim11=mapminmax('reverse',t_sim11, ps_output);%训练集拟合结果
L1 = resubLoss(gprMdl1)%损失函数

[t_sim22,~,~] = predict(gprMdl1,p_test);
T_sim22=mapminmax('reverse',t_sim22, ps_output);

%%  均方根误差
error11 = sqrt(sum((T_sim11' - T_train).^2) ./ M);
error22 = sqrt(sum((T_sim22' - T_test ).^2) ./ N);

%%  绘图
figure()
subplot(211)
plot(1: M, T_train, 'r-', 1: M, T_sim11, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化前训练集预测结果对比'; ['RMSE=' num2str(error11)]};
title(string)
xlim([1, M])
grid

subplot(212)
plot(1: N, T_test, 'r-', 1: N, T_sim22, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化前测试集预测结果对比';['RMSE=' num2str(error22)]};
title(string)
xlim([1, N])
grid



%%  相关指标计算
%  R2
R11 = 1 - norm(T_train - T_sim11')^2 / norm(T_train - mean(T_train))^2;
R22 = 1 - norm(T_test -  T_sim22')^2 / norm(T_test -  mean(T_test ))^2;

disp(['优化前训练集数据的R2为:', num2str(R11)])
disp(['优化前测试集数据的R2为:', num2str(R22)])

%  MAE
mae11 = sum(abs(T_sim11' - T_train)) ./ M ;
mae22 = sum(abs(T_sim22' - T_test )) ./ N ;

disp(['优化前训练集数据的MAE为:', num2str(mae11)])
disp(['优化前测试集数据的MAE为:', num2str(mae22)])

%  MBE
mbe11 = sum(T_sim11' - T_train) ./ M ;
mbe22 = sum(T_sim22' - T_test ) ./ N ;

disp(['优化前训练集数据的MBE为:', num2str(mbe11)])
disp(['优化前测试集数据的MBE为:', num2str(mbe22)])
相关文章
|
4天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
6天前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
6天前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
11天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
14天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
26天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
166 80
|
15天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
15天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
12天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。

热门文章

最新文章