【MATLAB第52期】基于MATLAB的高斯过程GPR超参数(sigma)自动优化算法 时间序列预测模型 五折交叉验证

简介: 使用GPR自动优化函数,对sigma进行自动寻优。一列时间序列数据 ,滑动窗口尺寸为15。适应度值log(1+loss)。

一、效果展示

2023-07-06_202404.png
2023-07-06_202417.png
2023-07-06_202320.png
2023-07-06_202329.png

二、优化思路

1.数据
一列时间序列数据 ,滑动窗口尺寸为15。
2.思路
使用GPR自动优化函数,对sigma进行自动寻优。
适应度值log(1+loss)。
迭代次数默认30.

三、代码展示

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  构造数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%%  划分训练集和测试集
temp = 1: 1: 922;

P_train = res(temp(1: 700), 1: 15)';
T_train = res(temp(1: 700), 16)';
M = size(P_train, 2);

P_test = res(temp(701: end), 1: 15)';
T_test = res(temp(701: end), 16)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%训练模型  这个是模型参数 ,运行较好地结果 
gprMdl= fitrgp(p_train,t_train,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',...
     struct('Optimizer','randomsearch'));%训练高斯过程模型 HyperparameterOptimizationOptions 五折交叉验证自动优化超参数sigma

%gprMdl = fitrgp(p_train,t_train,'Basis','None','KernelFunction','Exponential');
[t_sim1] = gprpre(gprMdl);
T_sim1=mapminmax('reverse',t_sim1, ps_output);%训练集拟合结果

[t_sim2,~,~] = predict(gprMdl,p_test);
T_sim2=mapminmax('reverse',t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);

%%  绘图
figure()
subplot(211)
plot(1: M, T_train, 'r-', 1: M, T_sim1, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化后训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

subplot(212)
plot(1: N, T_test, 'r-', 1: N, T_sim2, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化后测试集预测结果对比';['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2')^2 / norm(T_test -  mean(T_test ))^2;

disp(['优化后训练集数据的R2为:', num2str(R1)])
disp(['优化后测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['优化后训练集数据的MAE为:', num2str(mae1)])
disp(['优化后测试集数据的MAE为:', num2str(mae2)])

%  MBE
mbe1 = sum(T_sim1' - T_train) ./ M ;
mbe2 = sum(T_sim2' - T_test ) ./ N ;

disp(['优化后训练集数据的MBE为:', num2str(mbe1)])
disp(['优化后测试集数据的MBE为:', num2str(mbe2)])

%% 优化前 Sigma = 0.5
%gprMdl1 = fitrgp(p_train,t_train,'Basis','None','KernelFunction','Exponential');
[t_sim11] = gprpre(gprMdl1);
T_sim11=mapminmax('reverse',t_sim11, ps_output);%训练集拟合结果
L1 = resubLoss(gprMdl1)%损失函数

[t_sim22,~,~] = predict(gprMdl1,p_test);
T_sim22=mapminmax('reverse',t_sim22, ps_output);

%%  均方根误差
error11 = sqrt(sum((T_sim11' - T_train).^2) ./ M);
error22 = sqrt(sum((T_sim22' - T_test ).^2) ./ N);

%%  绘图
figure()
subplot(211)
plot(1: M, T_train, 'r-', 1: M, T_sim11, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化前训练集预测结果对比'; ['RMSE=' num2str(error11)]};
title(string)
xlim([1, M])
grid

subplot(212)
plot(1: N, T_test, 'r-', 1: N, T_sim22, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化前测试集预测结果对比';['RMSE=' num2str(error22)]};
title(string)
xlim([1, N])
grid



%%  相关指标计算
%  R2
R11 = 1 - norm(T_train - T_sim11')^2 / norm(T_train - mean(T_train))^2;
R22 = 1 - norm(T_test -  T_sim22')^2 / norm(T_test -  mean(T_test ))^2;

disp(['优化前训练集数据的R2为:', num2str(R11)])
disp(['优化前测试集数据的R2为:', num2str(R22)])

%  MAE
mae11 = sum(abs(T_sim11' - T_train)) ./ M ;
mae22 = sum(abs(T_sim22' - T_test )) ./ N ;

disp(['优化前训练集数据的MAE为:', num2str(mae11)])
disp(['优化前测试集数据的MAE为:', num2str(mae22)])

%  MBE
mbe11 = sum(T_sim11' - T_train) ./ M ;
mbe22 = sum(T_sim22' - T_test ) ./ N ;

disp(['优化前训练集数据的MBE为:', num2str(mbe11)])
disp(['优化前测试集数据的MBE为:', num2str(mbe22)])
相关文章
|
14天前
|
算法
基于GA遗传优化的TSP问题最优路线规划matlab仿真
本项目使用遗传算法(GA)解决旅行商问题(TSP),目标是在访问一系列城市后返回起点的最短路径。TSP属于NP-难问题,启发式方法尤其GA在此类问题上表现出色。项目在MATLAB 2022a中实现,通过编码、初始化种群、适应度评估、选择、交叉与变异等步骤,最终展示适应度收敛曲线及最优路径。
|
15天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
3天前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
6天前
|
算法
基于极大似然算法的系统参数辨识matlab仿真
本程序基于极大似然算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计,并计算估计误差及收敛曲线,对比不同信噪比下的误差表现。在MATLAB2022a版本中运行,展示了参数估计值及其误差曲线。极大似然估计方法通过最大化观测数据的似然函数来估计未知参数,适用于多种系统模型。
|
8天前
|
机器学习/深度学习 算法
基于小波神经网络的数据分类算法matlab仿真
该程序基于小波神经网络实现数据分类,输入为5个特征值,输出为“是”或“否”。使用MATLAB 2022a版本,50组数据训练,30组数据验证。通过小波函数捕捉数据局部特征,提高分类性能。训练误差和识别结果通过图表展示。
|
9天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
1月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
106 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
1月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
82 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
1月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
62 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码