基于DNN网络的信道估计matlab仿真,仿真输出信道估计值的mse指标

本文涉及的产品
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 基于DNN网络的信道估计matlab仿真,仿真输出信道估计值的mse指标

1.算法仿真效果
matlab2022a仿真结果如下:
31aace5ca5c9c452328b83c38c261641_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
6373452003a0b4358e158bcfd89b2535_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
2ddb62365167597b8428467525064ba9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
在信道变化迅速的系统中,通常依靠频域的导频子载波进行信道估计。导频子载波按照特定的规则插入到时频两维资源中。导频子载波处的信道响应可以通过最小二乘法(least-square,ls)和线性最小均方误差法(linearminimummeansquareerror,lmmse)进行估计,其他子载波处的信道响应则通过插值得到。基于判决反馈的盲信道估计方法将判决后的数据反馈至信道估计器进行去除调制信息操作,从而得到信道响应结果。基于相位的估计算法利用dqpsk调制信号幅度恒定相位为的整数倍的特性,利用接收信号相位在乘4、模2π、除以4的操作后,所有星座点都将变换到正实轴上(相位为0,幅度为1),这一操作相当于去除了dqpsk的调制信息,无需对信号进行判决。

    近几年,人工智能尤其是深度学习在无线通信物理层中也得到了广泛的应用。深度学习(Deep Learning, DL),由Hinton等人于2006年提出,是机器学习(MachineLearning, ML)的一个新领域。深度学习被引入机器学习使其更接近于最初的目标----人工智能(AI,Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语言和图像识别方面取得的效果,远远超过先前相关技术。它在搜索技术、数据挖掘、机器学习、机器翻译、自然语言处理、多媒体学习、语音、推荐和个性化技术,以及其它相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
    在所用的结构中使用DNN的原因是,DNN是唯一可以在任何类型(有监督的和无监督的)任何地方(星座整形器,信道估计器和检测器)应用的机器学习算法。例如,即使支持向量机(它是有监督的二进制分类器),尽管其检测性能良好,但也不能应用于星座整形器或信道估计器等其他部分(因为这两个部分是无监督的。DNN是光学通信中使用最广泛的深度学习技术,并且是传统方法的适当替代方法。DNN的复杂度低,响应速度快。它可以建模复杂的多维非线性关系。由于这些优点,在FSO中应用DNN进行星座整形,信道估计和检测可以显着降低复杂性,成本,等待时间和处理,同时保持系统性能。

      深度神经网络的内部神经网络有3层,第一层输入,最后一层输出,其余中间都是隐藏层,层与层之间全连接。在局部的小模型来讲和感知机是一样的,都是线性关系+激活函数,即

Layer 1: Layer 2:

Z[1] = W[1]·X + b[1] Z[2] = W[2]·A[1] + b[2]
A[1] = σ(Z[1]) A[2] = σ(Z[2])

X其实就是A[0],所以不难看出:

Layer i:
Z[i] = W[i]·A[i-1] + b[i]
A[i] = σ(Z[i])

(注:σ是sigmoid函数)

因此不管我们神经网络有几层,都是将上面过程的重复
2439500922d21a7feaf01169df7bc3f8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.MATLAB核心程序
```for i = 1:length(SNRS);
i
L = 3;
SNR = SNRS(i);
P=[1+1i,1-1i,2-1i,1+2i]';

for i=1:20000
    hh     = randn(3,1)+1i*randn(3,1);
    yy     = comsystem(P,L,hh,SNR);

    h(:,i) = hh;
    y(:,i) = yy;
end
n         = size(y,2);
indim     = size(y,1);
outdim    = size(h,1);

inputdim  = indim*2;
outputdim = outdim*2;

realy     = real(y);
imagy     = imag(y);

yy        = zeros(inputdim,n);

yy(1:2:inputdim-1,:) = realy;
yy(2:2:inputdim,:)   = imagy;

realh     = real(h);
imagh     = imag(h);

hh        = zeros(outputdim,n);

hh(1:2:outputdim-1,:) = realh;
hh(2:2:outputdim,:)   = imagh;

%Normalization
din      = min(yy')';
Tdin     = max(yy')';
trainYY  = yy;

for i = 1:n
    tmp          = yy(:,i);
    tmp          = (tmp-din)./(Tdin-din);
    trainYY(:,i) = tmp;
end

dout   = min(hh')';
Tdout  = max(hh')';

trainHH = hh;
for i = 1:n
    tmp          = hh(:,i);
    tmp          = (tmp-dout)./(Tdout-dout);
    trainHH(:,i) = tmp;
end


pr      = zeros(inputdim,2);
pr(:,1) = 0;
pr(:,2) = 1;
hiden   = 18;



net = newff(pr,[hiden,outputdim],{'logsig','purelin'},'trainlm');
net.trainParam.lr=0.01;
net.trainParam.goal=1e-5;
net.trainParam.epochs=40;
net=train(net,trainYY,trainHH);

if SNR==1
   save dat\DNN_SNR1.mat net din Tdin dout Tdout
end
if SNR==2
   save dat\DNN_SNR2.mat net din Tdin dout Tdout
end
if SNR==3
   save dat\DNN_SNR3.mat net din Tdin dout Tdout
end
if SNR==4
   save dat\DNN_SNR4.mat net din Tdin dout Tdout
end
if SNR==5
   save dat\DNN_SNR5.mat net din Tdin dout Tdout
end
if SNR==6
   save dat\DNN_SNR6.mat net din Tdin dout Tdout
end
if SNR==7
   save dat\DNN_SNR7.mat net din Tdin dout Tdout
end
if SNR==8
   save dat\DNN_SNR8.mat net din Tdin dout Tdout
end
if SNR==9
   save dat\DNN_SNR9.mat net din Tdin dout Tdout
end
if SNR==10
   save dat\DNN_SNR10.mat net din Tdin dout Tdout
end

if SNR==11
   save dat\DNN_SNR11.mat net din Tdin dout Tdout
end
if SNR==12
   save dat\DNN_SNR12.mat net din Tdin dout Tdout
end
if SNR==13
   save dat\DNN_SNR13.mat net din Tdin dout Tdout
end
if SNR==14
   save dat\DNN_SNR14.mat net din Tdin dout Tdout
end
if SNR==15
   save dat\DNN_SNR15.mat net din Tdin dout Tdout
end
if SNR==16
   save dat\DNN_SNR16.mat net din Tdin dout Tdout
end
if SNR==17
   save dat\DNN_SNR17.mat net din Tdin dout Tdout
end
if SNR==18
   save dat\DNN_SNR18.mat net din Tdin dout Tdout
end
if SNR==19
   save dat\DNN_SNR19.mat net din Tdin dout Tdout
end
if SNR==20
   save dat\DNN_SNR20.mat net din Tdin dout Tdout
end

end
```

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
14天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
24天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
6天前
|
存储 安全 算法
网络安全与信息安全:漏洞、加密技术及安全意识的重要性
如今的网络环境中,网络安全威胁日益严峻,面对此类问题,除了提升相关硬件的安全性、树立法律法规及行业准则,增强网民的网络安全意识的重要性也逐渐凸显。本文梳理了2000年以来有关网络安全意识的研究,综述范围为中国知网中篇名为“网络安全意识”的期刊、硕博论文、会议论文、报纸。网络安全意识的内涵是在“网络安全”“网络安全风险”等相关概念的发展中逐渐明确并丰富起来的,但到目前为止并未出现清晰的概念界定。此领域内的实证研究主要针对网络安全意识现状与问题,其研究对象主要是青少年。网络安全意识教育方面,很多学者总结了国外的成熟经验,但在具体运用上仍缺乏考虑我国的实际状况。 内容目录: 1 网络安全意识的相关
|
1天前
|
监控 安全 网络安全
企业网络安全:构建高效的信息安全管理体系
企业网络安全:构建高效的信息安全管理体系
13 5
|
2天前
|
存储 安全 网络安全
云计算与网络安全:探索云服务中的信息安全挑战与解决方案
【10月更文挑战第33天】在数字化时代的浪潮中,云计算以其灵活性、可扩展性和成本效益成为企业数字化转型的核心动力。然而,随之而来的网络安全问题也日益突出,成为制约云计算发展的关键因素。本文将深入探讨云计算环境中的网络安全挑战,分析云服务的脆弱性,并提出相应的信息安全策略和最佳实践。通过案例分析和代码示例,我们将展示如何在云计算架构中实现数据保护、访问控制和威胁检测,以确保企业在享受云计算带来的便利的同时,也能够维护其信息系统的安全和完整。
|
3天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第31天】本文将探讨网络安全和信息安全的重要性,以及如何通过理解和应用相关的技术和策略来保护我们的信息。我们将讨论网络安全漏洞、加密技术以及如何提高安全意识等主题。无论你是IT专业人士,还是对网络安全感兴趣的普通用户,都可以从中获得有用的信息和建议。
14 1
|
3天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第31天】随着互联网的普及,网络安全问题日益突出。本文将探讨网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者了解网络安全的重要性,提高自身的网络安全防护能力。
|
6天前
|
SQL 安全 算法
网络安全与信息安全:漏洞、加密技术与安全意识的交织
【10月更文挑战第28天】在数字时代的浪潮中,网络安全与信息安全成为保护个人隐私和企业资产的重要盾牌。本文将深入探讨网络安全中的常见漏洞,介绍加密技术的基本概念及其在保护数据中的应用,并强调提高安全意识的重要性。通过分析具体案例和提供实用的防护措施,旨在为读者提供一个全面的网络安全知识框架,以应对日益复杂的网络威胁。
24 4

热门文章

最新文章