RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息

简介: RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息

一、本文介绍

本文记录的是基于MobileNet V4的RT-DETR目标检测轻量化改进方法研究。其中MobileViT块旨在以较少的参数对输入张量中的局部和全局信息进行建模,结合卷积与 Transformer 的优势,并实现有效的信息编码与融合,。本文配置了原论文中MobileViT-SMobileViT-XSMobileViT-XXS三种模型,以满足不同的需求。

模型 参数量 计算量 推理速度
rtdetr-l 32.8M 108.0GFLOPs 11.6ms
Improved 12.0M 32.3GFLOPs 8.9ms

专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、MobileViT V1模型轻量化设计

MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TRANSFORMER

2.1 出发点

  • 轻量级卷积神经网络(CNNs)虽在移动视觉任务中有应用,但存在空间局限性。基于自注意力的视觉Transformer(ViTs)虽可学习全局表示,但模型较重。因此需要结合两者优势,构建适用于移动视觉任务的轻量级、低延迟网络。

    2.2 原理

  • Transformer视为卷积,学习全局表示的同时,隐式地结合卷积的特性(如空间偏差),并能用简单的训练方法(如基本的数据增强)学习表示,还能轻松与下游架构集成。

    2.3 结构

    2.3.1 MobileViT块

    • 对于输入张量$x\in\mathbb{R}^{H\times W\times C}$,先应用$n\times n$标准卷积层,再用点式(或$1\times1$)卷积层得到$X_{L}\in\mathbb{R}^{H\times W\times d}$。
    • 将$X{L}$展开为$N$个非重叠的扁平块$X{U}\in\mathbb{R}^{P\times N\times d}$,对每个块应用Transformer得到$X_{G}\in\mathbb{R}^{P\times N\times d}$。
    • 折叠$X{G}$得到$X{F}\in\mathbb{R}^{H\times W\times d}$,经点式卷积投影到低维空间后与$X$通过拼接操作合并,再用一个$n\times n$卷积层融合这些拼接特征。

      2.3.2 整体架构

    • 受轻量级CNNs启发,网络在不同参数预算下有不同配置。初始层是步长为$3\times3$的标准卷积,接着是MobileNetv2块MobileViT块。使用Swish作为激活函数,在MobileViT块中$n = 3$,特征图的空间维度通常是$2$的倍数且$h, w\leq n$,设置$h = w = 2$。

在这里插入图片描述

2.4 优势

  • 性能更好:在不同移动视觉任务中,对于给定的参数预算,MobileViT比现有的轻量级CNNs性能更好。例如在ImageNet - 1k数据集上,约600万个参数时,MobileViT的top - 1准确率比MobileNetv3高3.2%。
    • 泛化能力强:泛化能力指训练和评估指标之间的差距。与之前的ViT变体相比,MobileViT显示出更好的泛化能力
    • 鲁棒性好:对超参数(如数据增强和L2正则化)不敏感,用基本的数据增强方法训练,对L2正则化不太敏感。
    • 计算成本:理论上,MobileViT多头自注意力计算成本为$O(N^{2}Pd)$,比ViT的$O(N^{2}d)$低效,但实际上更高效。例如在ImageNet - 1K数据集上,MobileViT比DeIT的FLOP少$2X$,准确率高1.8%。

论文:https://arxiv.org/pdf/2110.02178
源码:https://github.com/apple/ml-cvnets

三、实现代码及RT-DETR修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/144212976

目录
相关文章
|
20小时前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【模型轻量化】| GhostNetV2:利用远距离注意力增强廉价操作
RT-DETR改进策略【模型轻量化】| GhostNetV2:利用远距离注意力增强廉价操作
75 63
RT-DETR改进策略【模型轻量化】| GhostNetV2:利用远距离注意力增强廉价操作
|
20小时前
|
机器学习/深度学习 自动驾驶 计算机视觉
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
75 61
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
|
18天前
|
前端开发 UED 索引
React 图片灯箱组件 Image Lightbox
图片灯箱组件是一种常见的Web交互模式,用户点击缩略图后弹出全屏窗口展示大图,并提供导航功能。本文介绍了基于React框架的图片灯箱组件开发,涵盖初始化状态管理、图片加载与预加载、键盘和鼠标事件处理等常见问题及解决方案。通过`useState`和`useEffect`钩子管理状态,使用懒加载和预加载优化性能,确保流畅的用户体验。代码案例展示了组件的基本功能实现,包括打开/关闭灯箱、切换图片及键盘操作。
116 80
|
20小时前
|
机器学习/深度学习 计算机视觉 网络架构
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
74 63
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
|
20小时前
|
数据采集 搜索推荐 API
小红书笔记详情 API 接口的开发、应用与收益
小红书(RED)作为国内领先的生活方式分享平台,汇聚了大量用户生成内容(UGC),尤其是“种草”笔记。小红书笔记详情API接口为开发者提供了获取笔记详细信息的强大工具,包括标题、内容、图片、点赞数等。通过注册开放平台账号、申请API权限并调用接口,开发者可以构建内容分析工具、笔记推荐系统、数据爬虫等应用,提升用户体验和运营效率,创造新的商业模式。本文详细介绍API的开发流程、应用场景及潜在收益,并附上Python代码示例。
88 61
|
20小时前
|
Linux
About the Systemd
It has been a long time that the linux use `init` to manage the startup process, such as `sudo /etc/init.d/apache2 start` or `service apache2 start`, but the `init` is serial. To address this issue, the `systemd` was born. The d is the abbreviation of `daemon`, which means the `systemd` is a daemon
74 62
|
18天前
|
数据挖掘 数据处理 索引
Pandas高级数据处理:多级索引
Pandas的多级索引(MultiIndex)允许在一个轴上拥有多个层次的索引,适用于分层数据处理。可通过列表或已有DataFrame创建多级索引,如按日期和股票代码索引金融数据。常见问题包括索引层级混乱、数据选择困难和聚合操作复杂,解决方法分别为检查参数顺序、使用`loc`和`xs`方法选择数据、用`groupby()`进行聚合。代码案例展示了创建、调整索引层级、选择特定数据及聚合操作。
125 83
|
18天前
|
存储 安全 区块链
区块链在房地产交易中的应用:革新房产市场的未来
区块链在房地产交易中的应用:革新房产市场的未来
144 80
|
18天前
超好看的404提示页面HTML源码
超好看的404提示页面HTML源码
150 77
|
8天前
|
机器学习/深度学习 Python
哪些特征导致过拟合?使用ParShap 方法精准定位导致模型泛化能力下降的关键特征
本文探讨了如何识别导致模型过拟合的特征,提出了一种基于SHAP值和偏相关性的新方法——ParShap。通过分析德国健康登记数据集,作者展示了传统特征重要性无法准确反映特征在新数据上的表现,而ParShap能有效识别出过拟合特征。实验表明,移除这些特征可以显著减少过拟合现象,验证了该方法的有效性。
137 79
哪些特征导致过拟合?使用ParShap 方法精准定位导致模型泛化能力下降的关键特征

热门文章

最新文章