RT-DETR改进策略【Conv和Transformer】| ACmix 卷积和自注意力的结合,充分发挥两者优势

简介: RT-DETR改进策略【Conv和Transformer】| ACmix 卷积和自注意力的结合,充分发挥两者优势

一、本文介绍

本文记录的是利用ACmix改进RT-DETR检测模型,==卷积自注意力是两种强大的表示学习技术,本文利用两者之间潜在的紧密关系,进行二次创新,实现优势互补,减少冗余,通过实验证明,实现模型有效涨点。==


专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、ACmix介绍

On the Integration of Self-Attention and Convolution

2.1 原理

2.1.1 卷积分解

传统的卷积可以分解为多个$1×1$卷积,然后是位移和求和操作。例如对于一个$k×k$的卷积核,可分解为$k^{2}$个$1×$卷积。

2.1.2 自注意力解释

自注意力模块中查询、键和值的投影可以看作是多个$1×1$卷积,然后计算注意力权重并聚合值。

2.1.3 相似性及主导计算复杂度

两个模块的第一阶段都包含类似的$1×1$卷积操作,并且这个第一阶段相比第二阶段在计算复杂度上占主导地位(与通道大小的平方相关),这为整合提供了理论基础。

2.2 结构

  • 第一阶段:输入特征图通过三个$1×1$卷积进行投影并重塑为$N$块,得到一组丰富的中间特征,包含$3×N$个特征图。
  • 第二阶段
    • 自注意力路径:将中间特征收集为$N$组,每组包含三个特征(来自每个$1×1$卷积),作为查询、键和值,按照传统的多头自注意力模块进行处理。
    • 卷积路径:对于卷积核大小为$k$的情况,采用一个轻量级全连接层并生成$k^{2}$个特征图,然后通过位移和聚合这些特征来处理输入特征,从局部感受野收集信息。
    • 最终输出:两条路径的输出相加,其强度由两个可学习的标量$\alpha$和$\beta$控制,即$F{out}=\alpha F{att}+\beta F_{conv}$。

      2.3 优势

  • 计算效率
    • 理论上,在第一阶段的计算复杂度与通道大小相关,相比传统卷积(如$3×3$卷积),在第一阶段的计算成本与自注意力相似且更轻。在第二阶段虽然有额外计算开销,但复杂度与通道大小呈线性关系且相对第一阶段较小。
    • 通过改进位移和求和操作,如采用深度可分离卷积替代低效的张量位移,提高了模块的实际计算效率。
  • 性能优势:在图像识别和下游任务(如图像分类、语义分割和目标检测)上,与竞争基准相比,模型取得了持续改进的结果。
  • 灵活性和通用性
    • 模型可以自适应地调整卷积和自注意力路径的强度,根据网络中滤波器的位置灵活组合两个模块。
    • 可以应用于多种自注意力模式,如Patchwise attention、Window attention和Global attention等变体。

论文:https://arxiv.org/pdf/2111.14556
源码:https://github.com/LeapLabTHU/ACmix

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/144081988

目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
3天前
|
人工智能 搜索推荐 Docker
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
DeepSeek R1 + LobeChat + Ollama:快速本地部署模型,创建个性化 AI 助手
1969 101
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
|
1月前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171370 17
|
10天前
|
Linux iOS开发 MacOS
deepseek部署的详细步骤和方法,基于Ollama获取顶级推理能力!
DeepSeek基于Ollama部署教程,助你免费获取顶级推理能力。首先访问ollama.com下载并安装适用于macOS、Linux或Windows的Ollama版本。运行Ollama后,在官网搜索“deepseek”,选择适合你电脑配置的模型大小(如1.5b、7b等)。通过终端命令(如ollama run deepseek-r1:1.5b)启动模型,等待下载完成即可开始使用。退出模型时输入/bye。详细步骤如下图所示,轻松打造你的最强大脑。
8546 86
|
1月前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150307 32
|
1天前
|
人工智能 自然语言处理 JavaScript
宜搭上新,DeepSeek 插件来了!
钉钉宜搭近日上线了DeepSeek插件,无需编写复杂代码,普通用户也能轻松调用强大的AI大模型能力。安装后,平台新增「AI生成」组件,支持创意内容生成、JS代码编译、工作汇报等场景,大幅提升工作效率。快来体验这一高效智能的办公方式吧!
883 5
|
2天前
|
API 开发工具 Python
阿里云PAI部署DeepSeek及调用
本文介绍如何在阿里云PAI EAS上部署DeepSeek模型,涵盖7B模型的部署、SDK和API调用。7B模型只需一张A10显卡,部署时间约10分钟。文章详细展示了模型信息查看、在线调试及通过OpenAI SDK和Python Requests进行调用的步骤,并附有测试结果和参考文档链接。
660 5
阿里云PAI部署DeepSeek及调用
|
11天前
|
人工智能 自然语言处理 Java
Spring AI,搭建个人AI助手
本期主要是实操性内容,聊聊AI大模型,并使用Spring AI搭建属于自己的AI助手、知识库。本期所需的演示源码笔者托管在Gitee上(https://gitee.com/catoncloud/spring-ai-demo),读者朋友可自行查阅。
938 41
Spring AI,搭建个人AI助手
|
3天前
|
机器学习/深度学习 人工智能 并行计算
一文了解火爆的DeepSeek R1 | AIGC
DeepSeek R1是由DeepSeek公司推出的一款基于强化学习的开源推理模型,无需依赖监督微调或人工标注数据。它在数学、代码和自然语言推理任务上表现出色,具备低成本、高效率和多语言支持等优势,广泛应用于教育辅导、金融分析等领域。DeepSeek R1通过长链推理、多语言支持和高效部署等功能,显著提升了复杂任务的推理准确性,并且其创新的群体相对策略优化(GRPO)算法进一步提高了训练效率和稳定性。此外,DeepSeek R1的成本低至OpenAI同类产品的3%左右,为用户提供了更高的性价比。
785 10
|
2月前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201994 15
对话 | ECS如何构筑企业上云的第一道安全防线

热门文章

最新文章