Apache Kafka - ConsumerInterceptor 实战 (1)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Apache Kafka - ConsumerInterceptor 实战 (1)

20191116123525638.png



概述


ConsumerInterceptor是Kafka中的一个重要组件,它允许开发人员在Kafka消费者端拦截和修改消息的处理过程。ConsumerInterceptor可以用于实现各种功能,从消息监控到数据转换和错误处理,为开发人员提供了更大的灵活性和可定制性。


ConsumerInterceptor的主要作用是在消息被消费之前和之后对其进行拦截和处理。它可以用于以下几个方面:


监控:通过ConsumerInterceptor,可以在消息被消费之前和之后记录和监控消息的元数据,例如消息的偏移量、主题、分区等信息。这对于跟踪和分析消息流的健康状况以及性能优化非常有用。


转换:ConsumerInterceptor还可以用于对消息进行转换和修改。通过拦截消息并对其进行操作,可以在消费者端对消息进行格式转换、数据解析或者其他自定义处理。例如,你可以将消息从一种格式转换为另一种格式,或者对消息进行特定的业务处理。


错误处理:当消费者在处理消息时发生错误或异常情况时,ConsumerInterceptor可以捕获这些错误并采取适当的措施。你可以在拦截器中实现自定义的错误处理逻辑,例如记录错误日志、发送告警通知或者进行重试操作,从而提高应用程序的可靠性和容错性。



使用场景


使用场景方面,ConsumerInterceptor可以在多种情况下发挥作用,例如:


监控和统计:你可以使用ConsumerInterceptor来收集和记录消费者端的统计信息,例如消费速率、处理延迟等。这样可以帮助你监控应用程序的性能并进行性能优化。


数据转换:如果你需要将消息从一种格式转换为另一种格式,例如将JSON消息转换为Avro格式,你可以使用ConsumerInterceptor来实现这个转换过程。


数据验证:ConsumerInterceptor可以用于验证消息的有效性和完整性。你可以在拦截器中实现验证逻辑,例如检查消息的签名或者校验消息的结构,以确保只有符合要求的消息被消费。


错误处理和重试:当消费者在处理消息时遇到错误,例如数据库连接失败或者网络故障,你可以使用ConsumerInterceptor来捕获这些错误并采取适当的措施。你可以在拦截器中实现自定义的错误处理逻辑,例如记录错误日志、发送告警通知或者进行消息重试。


总之,ConsumerInterceptor为开发人员提供了在消费者端对消息进行拦截、处理和定制的能力。通过使用ConsumerInterceptor,你可以实现一系列功能,包括监控、数据转换和错误处理,从而更好地控制和管理Kafka消费者端的消息处理过程。


实战


bac11ba9fa5a45ea97bff3cd153b6ac1.png


配置文件

spring:
  kafka:
    bootstrap-servers: 20.10.110.137:9888 # Kafka服务的地址
    producer:
      key-serializer: org.apache.kafka.common.serialization.StringSerializer # key的序列化器
      value-serializer: org.apache.kafka.common.serialization.StringSerializer # value的序列化器
      acks: 1 # acks=0:表示producer不需要等待任何确认收到的信息。副本将立即加到socket缓冲区并认为已经发送。如果使用此选项,则存在丢失数据的风险,因为服务器在数据到达副本之前可能会崩溃。
      retries: 0 # 失败重试次数,0表示不启用重试机制
      batch-size: 16384 # 发送缓冲区大小,按照字节计算
      linger-ms: 1 # 发送延时,单位毫秒
      buffer-memory: 33554432 # 发送缓存区的大小,按照字节计算
      compression-type: gzip # 压缩类型,默认是none,可选snappy、gzip、lz4
    consumer:
      #Kafka中没有初始偏移或如果当前偏移在服务器上不再存在时,默认区最新 ,有三个选项 【latest, earliest, none】
      auto-offset-reset: earliest
      #是否开启自动提交
      enable-auto-commit: false
      #key的解码方式
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      #value的解码方式
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      #消费者组groupid
      group-id: process-group
      #消费者最大拉取的消息数量
      max-poll-records: 2000
      #消费者最大等待时间
      max-poll-interval-ms: 2000
    listener:
      type: batch
      ack-mode: manual # 手动提交
      concurrency: 12 # 并发数


配置类

package net.zf.module.system.config;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;
import org.springframework.kafka.listener.ConsumerAwareListenerErrorHandler;
import org.springframework.kafka.listener.ContainerProperties;
import java.util.HashMap;
import java.util.Map;
/**
 * @author artisan
 */
@Slf4j
@Configuration
public class KafkaConfig {
    @Value("${spring.kafka.bootstrap-servers}")
    private String bootstrapServer;
    @Value("${spring.kafka.consumer.auto-offset-reset}")
    private String autoOffsetReset;
    @Value("${spring.kafka.consumer.enable-auto-commit}")
    private String enableAutoCommit;
    @Value("${spring.kafka.consumer.key-deserializer}")
    private String keyDeserializer;
    @Value("${spring.kafka.consumer.value-deserializer}")
    private String valueDeserializer;
    @Value("${spring.kafka.consumer.group-id}")
    private String group_id;
    @Value("${spring.kafka.consumer.max-poll-records}")
    private String maxPollRecords;
    @Value("${spring.kafka.consumer.max-poll-interval-ms}")
    private String maxPollIntervalMs;
    @Value("${spring.kafka.listener.concurrency}")
    private Integer concurrency;
    private final String consumerInterceptor = "net.zf.module.system.kafka.interceptor.FailureRateInterceptor";
    /**
     * 消费者配置信息
     */
    @Bean
    public Map<String, Object> consumerConfigs() {
        Map<String, Object> props = new HashMap<>(32);
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,bootstrapServer);
        props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffsetReset);
        props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,enableAutoCommit);
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,keyDeserializer);
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,valueDeserializer);
        props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG,maxPollRecords);
        props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG,maxPollIntervalMs);
        props.put(ConsumerConfig.GROUP_ID_CONFIG,group_id);
        props.put(ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG,consumerInterceptor );
        return props;
    }
    /**
     * 消费者批量工厂
     */
    @Bean
    public KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, String>> batchFactory() {
        ConcurrentKafkaListenerContainerFactory<String,String> factory = new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(new DefaultKafkaConsumerFactory<>(consumerConfigs()));
        factory.getContainerProperties().setAckMode(ContainerProperties.AckMode.MANUAL);
        factory.setBatchListener(true);
        factory.setConcurrency(concurrency);
        return factory;
    }
    /**
     * 异常处理器
     *
     * @return
     */
    @Bean
    public ConsumerAwareListenerErrorHandler consumerAwareListenerErrorHandler() {
        return (message, exception, consumer) -> {
//            log.error("消息{} , 异常原因{}", message, exception.getMessage());
            log.error("consumerAwareListenerErrorHandler called");
            return null;
        };
    }
}


这段代码是一个用于配置Kafka消费者的Spring配置类。它使用了Spring Kafka库来设置Kafka的消费者配置和相关的监听器。


以下是代码的主要部分的解释:


通过@Configuration注解将该类标记为一个Spring配置类。

使用@Value注解注入配置属性,这些属性来自于应用的配置文件(比如application.properties)。

consumerConfigs()方法创建了一个包含Kafka消费者配置信息的props对象,并将其返回。这些配置包括Kafka服务器地址、消费者组ID、序列化/反序列化类等。

batchFactory()方法创建了一个ConcurrentKafkaListenerContainerFactory对象,并设置了相关的属性。它使用了前面定义的消费者配置,并设置了批量消费和并发处理的参数。

consumerAwareListenerErrorHandler()方法创建了一个ConsumerAwareListenerErrorHandler对象,用于处理消费过程中出现的异常。在这个例子中,它只是打印了错误日志。

总体而言,这段代码的目的是配置Kafka消费者的相关属性,包括连接到Kafka服务器的配置、消费者组ID、序列化/反序列化类等。它还定义了一个批量消费的监听器工厂和一个异常处理器。这些配置可以通过注入KafkaListenerContainerFactory和ConsumerAwareListenerErrorHandler来在应用中使用。


自定义ConSumerInterceptor

package net.zf.module.system.kafka.interceptor;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerInterceptor;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.TopicPartition;
import org.springframework.stereotype.Component;
import java.util.Map;
/**
 * @author artisan
 */
@Slf4j
@Component
public class FailureRateInterceptor implements ConsumerInterceptor<Object, Object> {
    /**
     * 消息消费前的拦截处理
     *
     * @param consumerRecords
     * @return
     */
    @Override
    public ConsumerRecords<Object, Object> onConsume(ConsumerRecords<Object, Object> consumerRecords) {
        // TODO
        log.info("FailureRateInterceptor#onConsume");
        // 根据设定的规则计算失败率,并进行判断是否跳过消息的消费
        // 返回ConsumerRecords对象, 继续执行下游的消费逻辑或者直接返回空的ConsumerRecords对象 (ConsumerRecords.EMPTY)
        return consumerRecords;
    }
    /**
     * 消息提交前进行拦截处理
     *
     * @param map
     */
    @Override
    public void onCommit(Map<TopicPartition, OffsetAndMetadata> map) {
        log.info("FailureRateInterceptor#onCommit");
    }
    /**
     * 拦截器关闭前进行拦截处理(如果有的话)
     */
    @Override
    public void close() {
        log.info("FailureRateInterceptor#close");
    }
    /**
     * 初始化配置(如果有的话)
     *
     * @param map
     */
    @Override
    public void configure(Map<String, ?> map) {
        log.info("FailureRateInterceptor#configure");
    }
}


onConsume 可以控制 ConsumerRecords, 通过返回null ,可以暂停消费。


这段代码是一个自定义的Kafka消费者拦截器,实现了ConsumerInterceptor接口。拦截器可以在消息消费和提交的过程中插入自定义的逻辑,用于处理消息或拦截操作。


以下是代码的主要部分的解释:


@Slf4j注解用于自动生成日志记录器。

@Component注解将该类标记为Spring组件,使得它可以被自动扫描和注入到应用中。

实现了ConsumerInterceptor接口,并重写了其中的方法。

onConsume()方法在消费者消费消息之前被调用。在这个例子中,它只是打印了日志信息,表示拦截器的执行。

onCommit()方法在消息提交之前被调用。在这个例子中,它只是打印了日志信息,表示拦截器的执行。

close()方法在拦截器关闭之前被调用。在这个例子中,它只是打印了日志信息,表示拦截器的执行。

configure()方法在拦截器初始化配置时被调用。在这个例子中,它只是打印了日志信息,表示拦截器的执行。

拦截器的具体逻辑还没有实现,而是用// TODO标记了需要填充的部分。根据注释的描述,它可能会根据设定的规则计算消费失败率,并根据判断跳过或继续消费消息。


总体而言,这段代码定义了一个自定义的Kafka消费者拦截器。拦截器可以在消息消费和提交的过程中执行自定义的逻辑。在这个例子中,拦截器的逻辑还没有实现,只是打印了日志信息以表示拦截器的执行。你需要根据需求实现onConsume()方法中的拦截逻辑,以便根据设定的规则处理消息消费的失败率。


使用

package net.zf.module.system.kafka.consumer;
import lombok.extern.slf4j.Slf4j;
import net.zf.module.system.entity.AttackMessage;
import net.zf.module.system.executors.factory.MessageExecutorFactory;
import net.zf.module.system.service.es.AttackMessageESService;
import net.zf.module.system.util.constants.KafkaTopicConstant;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.support.Acknowledgment;
import org.springframework.stereotype.Component;
import java.util.ArrayList;
import java.util.List;
/**
 * @author artisan
 */
@Component
@Slf4j
public class AttackKafkaConsumer {
    @Autowired
    private MessageExecutorFactory messageExecutorFactory;
    @Autowired
    private AttackMessageESService attackMessageESService;
    @KafkaListener(topicPattern = KafkaTopicConstant.ATTACK_MESSAGE + ".*",
            containerFactory = "batchFactory",
            errorHandler = "consumerAwareListenerErrorHandler")
    public void processMessage(List<String> records, Acknowledgment ack)  {
        log.info("AttackKafkaConsumer 当前线程 {} , 本次拉取的数据总量:{} ", Thread.currentThread().getId(), records.size());
        try {
            List<AttackMessage> attackMessages = new ArrayList();
            records.stream().forEach(record -> {
                messageExecutorFactory.process(KafkaTopicConstant.ATTACK_MESSAGE).execute(record, attackMessages);
            });
            if (!attackMessages.isEmpty()) {
                String response = attackMessageESService.addDocuments(attackMessages, false);
                log.info("AttackKafkaConsumer本次处理的数据总量:{}, 响应结果: {}", attackMessages.size(), response);
            }
        } finally {
            ack.acknowledge();
        }
    }
}


这段代码定义了一个名为AttackKafkaConsumer的类,它是一个Kafka消费者。它使用了Spring Kafka提供的@KafkaListener注解来指定消费者的相关配置。


以下是代码的主要部分的解释:


@Component注解将该类标记为Spring组件,使得它可以被自动扫描和注入到应用中。

@Slf4j注解用于自动生成日志记录器。

AttackKafkaConsumer类中注入了MessageExecutorFactory和AttackMessageESService两个依赖,通过@Autowired注解实现自动注入。

@KafkaListener注解标记了processMessage()方法作为Kafka消费者的消息处理方法。

topicPattern属性指定了要监听的Kafka主题的模式,使用了常量KafkaTopicConstant.ATTACK_MESSAGE并结合通配符.*。

containerFactory属性指定了用于创建Kafka监听容器的工厂bean的名称,使用了名为batchFactory的工厂。

errorHandler属性指定了用于处理消费者异常的错误处理器的bean的名称,使用了名为consumerAwareListenerErrorHandler的错误处理器。

processMessage()方法是消息的实际处理逻辑。它接收一个List<String>类型的消息记录和一个Acknowledgment对象作为参数。

首先,它记录了当前线程ID和本次拉取的数据总量的日志信息。

然后,它创建了一个空的AttackMessage列表,用于存储处理后的消息。

使用records.stream().forEach()遍历每条消息记录,并通过messageExecutorFactory调用process()方法来处理每条记录,同时将处理结果添加到attackMessages列表中。

在处理完所有消息后,如果attackMessages列表不为空,将调用attackMessageESService的addDocuments()方法将消息添加到Elasticsearch中,并记录处理的数据总量和响应结果的日志信息。

最后,在finally块中调用ack.acknowledge()手动确认消费完成。


总体而言,这段代码定义了一个Kafka消费者类AttackKafkaConsumer,并使用@KafkaListener注解指定了监听的主题、容器工厂和错误处理器。processMessage()方法是处理消息的具体逻辑,它遍历消息记录并调用适当的执行器进行处理,最后将处理结果添加到列表中,并通过Elasticsearch服务将消息存储到数据库中。消费完成后,手动确认消息的消费。

相关文章
|
2月前
|
消息中间件 安全 Kafka
Apache Kafka安全加固指南:保护你的消息传递系统
【10月更文挑战第24天】在现代企业环境中,数据的安全性和隐私保护至关重要。Apache Kafka作为一款广泛使用的分布式流处理平台,其安全性直接影响着业务的稳定性和用户数据的安全。作为一名资深的Kafka使用者,我深知加强Kafka安全性的重要性。本文将从个人角度出发,分享我在实践中积累的经验,帮助读者了解如何有效地保护Kafka消息传递系统的安全性。
137 7
|
2月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
103 5
|
2月前
|
消息中间件 Java Kafka
什么是Apache Kafka?如何将其与Spring Boot集成?
什么是Apache Kafka?如何将其与Spring Boot集成?
74 5
|
2月前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
58 1
|
2月前
|
消息中间件 Ubuntu Java
Ubuntu系统上安装Apache Kafka
Ubuntu系统上安装Apache Kafka
|
2月前
|
消息中间件 监控 Kafka
Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面
随着大数据技术的发展,Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面,方便管理和监控 Kafka 集群。本文详细介绍了 Kafka Manager 的部署步骤和基本使用方法,包括配置文件的修改、启动命令、API 示例代码等,帮助你快速上手并有效管理 Kafka 集群。
56 0
|
24天前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
312 33
The Past, Present and Future of Apache Flink
|
3月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
888 13
Apache Flink 2.0-preview released
|
3月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
113 3
|
4月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。

推荐镜像

更多