卷!用扩散模型合成连贯视觉故事,输入字幕就能脑补画面,代词ta都分得清

简介: 卷!用扩散模型合成连贯视觉故事,输入字幕就能脑补画面,代词ta都分得清

以后,故事配图这个活可以交给 AI 了。


你有没有发现,最近大火的扩散模型如 DALL·E 2、Imagen 和 Stable Diffusion,虽然在文本到图像生成方面可圈可点,但它们只是侧重于单幅图像生成,假如要求它们生成一系列连贯的图像如漫画,可能表现就差点意思了。


生成具有故事性的漫画可不是那么简单,不光要保证图像质量,画面的连贯性也占有非常重要的地位,如果生成的图像前后连贯性较差,故事中的人物像素成渣,给人一种看都不想看的感觉,就像下图展示的,生成的故事图就像加了马赛克,完全看不出图像里有啥。



本文中,来自滑铁卢大学、阿里巴巴集团等机构的研究者向这一领域发起了挑战:他们提出了自回归潜在扩散模型(auto-regressive latent diffusion model, AR-LDM),从故事可视化和故事延续入手。故事的可视化旨在合成一系列图像,用来描述用句子组成的故事;故事延续是故事可视化的一种变体,与故事可视化的目标相同,但基于源框架(即第一帧)完成。这一设置解决了故事可视化中的一些问题(泛化问题和信息限制问题),允许模型生成更有意义和连贯的图像。



论文地址:https://arxiv.org/pdf/2211.10950.pdf


具体来说, AR-LDM 采用了历史感知编码模块,其包含一个 CLIP 文本编码器和 BLIP 多模态编码器。对于每一帧,AR-LDM 不仅受当前字幕的指导,而且还以先前生成的图像字幕历史为条件。这允许 AR-LDM 生成相关且连贯的图像。


据了解,这是第一项成功利用扩散模型进行连贯视觉故事合成的工作。


该研究的效果如何呢?例如,下图是本文方法和 StoryDALL·E 的比较,其中 #1、2、3、4、5 分别代表第几帧,在第 3 和第 4 帧的字幕中没有描述汽车或背景的细节,只是两句话「#3:Fred 、 Wilma 正在开车 」、「#4:Fred 一边开车,一边听乘客 Wilma 说话。Wilma 抱着双臂和 Fred 说话时看起来很生气。」相比较而言,AR-LDM 生成的图像质量明显更高,人物脸部表情等细节清晰可见,且生成的系列图像更具连贯性,例如 StoryDALL·E 生成的图像,很明显的看到背景都不一样,人物细节也很模糊,其生成只根据上下文文本条件,而没有利用之前生成的图像。相反,AR-LDM 前后给人的感觉就是一个完整的漫画故事。


总结来说就是,AR-LDM 表现出很强的多模态理解和图像生成能力。它能够精确地生成字幕描述的高质量场景,并在帧间保持很强的一致性。此外,该研究还探索了采用 AR-LDM 来保持故事中未见过的角色(即代词所指的角色,例如图 1 最后一帧中的男人)的一致性。这种适配可以在很大程度上缓解由于对未见角色的不确定描述而导致的生成结果不一致。



最后,该研究在两个数据集 FlintstonesSV 和 PororoSV 上进行了实验,虽然使用的数据集都是卡通图像,但该研究还引入了一个新的数据集 VIST,来更好地评估 AR-LDM 对真实世界的故事合成能力。


定量评估结果表明 AR-LDM 在故事可视化和连续任务中都实现了 SOTA 性能。特别是,AR-LDM 在 PororoSV 上取得了 16.59 的 FID 分数,相对于之前的故事可视化方法提高了 70%。AR-LDM 还提高了故事连续性能,在所有评估数据集上相对提高了大约 20%。此外,该研究还进行了大规模的人类评估,以测试 AR-LDM 在视觉质量、相关性和一致性的表现,这表明人类更喜欢本文合成的故事而不是以前的方法。


方法概述


与单字幕文本到图像任务不同,合成连贯的故事需要模型了解历史描述和场景。例如下面这个故事「红色金属圆柱立方体位于中心,然后在右侧添加一个绿色橡胶立方体」,仅第二句话无法为模型提供足够的指导来生成连贯的图像。因此对于模型来说,了解第一张生成图像中「红色金属圆柱立方体」的历史字幕、场景和外观至关重要。


设计强大的故事合成模型的关键是使其能够将当前图像生成与历史字幕和场景结合起来。在这项工作中,研究者提出了 AR-LDM,以实现更好的跨帧一致性。如下图 2a 所示,AR-LDM 利用历史字幕和图像来生成未来帧。图 2b 显示了 AR-LDM 的详细架构。



现有工作假设每一帧之间的条件独立,并根据字幕生成整个视觉故事。而 AR-LDM 额外地以历史图像为条件来摆脱这个假设,并根据链式法则直接估计后验,其形式如下


AR-LDM 还能在高效、低维潜在空间中执行正向和反向扩散过程。潜在空间在感知上近似等同于高维 RGB 空间,而像素中冗余的语义无意义信息被消除。具体地,AR-LDM 在扩散过程中使用潜在表示代替像素,最终输出可以用 D(z) 解码回像素空间。单独的轻度感知压缩阶段仅消除难以察觉的细节,使模型能够以更低的训练和推理成本获得具有竞争力的生成结果。

研究者使用历史感知条件网络将历史字幕 - 图像对编码为多模态条件,以指导去噪过程条件网络由 CLIP 和 BLIP 组成,分别负责当前字幕编码和先前字幕图像编码。BLIP 使用视觉语言理解和生成任务与大规模过滤干净的 Web 数据进行预训练。总之,AR-LDM可以通过以下公式生成图像


自适应 AR-LDM


对于漫画等现实世界的应用,有必要为新的(未见过的)角色保持一致性。受 Textual Inversion 和 DreamBooth 的启发,研究者添加了一个新的 token 来表示未见过的角色,并调整经过训练的 AR-LDM 以泛化到特定的未见过的角色。


具体来说,新 token 的嵌入由类似的现有单词初始化,如「man」或「woman」。研究者只需要角色的 4-5 张图像组成一个故事作为训练数据集,并使用 1e-5 的相同学习率对经过 100 个 epoch 的 AR-LDM 进行微调。他们发现微调 AR-LDM 的整个参数(仅编码器和解码器 D 除外)获得了更好的性能。


实验结果


研究者使用三个数据集作为测试平台,分别是 PororoSV、FlintstonesSV 和 VIST。这三个数据集中的每个故事都包含 5 个连续的帧。对于故事可视化,研究者从字幕中预测全部的 5 帧。对于故事连贯性,第一帧被指定为源帧,并参考源帧生成其余 4 帧。他们在 8 块 NVIDIA A100-80GB GPU 上对 AR-LDM 训练了 50 个 epoch,用时两天。

研究者使用两种设置评估 AR-LDM,其一是使用自动度量 FID 分数进行定量评估,其二是关于视觉质量、相关性和一致性的大规模人工评估。


下表 2 展示了在 PororoSV 上的故事可视化结果,其中 AR-LDM 取得了重大进步,SOTA FID 分数得分为 16.59,大大低于以前的方法。



下图 4a 中,AR-LDM 能够生成高质量、连贯的视觉故事,同时忠实地再现角色细节和背景。图 4b 中,AR-LDM 可以通过自回归生成保留场景,例如左侧示例中最后两帧的背景,以及右侧示例中第三和第四帧中的块。



研究者测试了 AR-LDM 的故事连贯性,结果如下表 1 所示。AR-LDM 在所有四个数据集上都获得新的 SOTA FID 分数。值得一提的是,AR-LDM 凭借大约一半的参数优于 MEGA-StoryDALL·E。



下图 5 显示了 FlintstonesSV 和 VIST-SIS 数据集上的更多示例,可以观察到跨帧的场景一致性,例如左上角示例中第三帧和第四帧的窗户,左下角示例中的海岸场景。



下图 6 中,与其他方法相比,具有自回归生成方式的 AR-LDM 可以更好地跨帧保留背景和场景视图。



下图 7 中,所有带下划线的文本都指的是同一个角色(即源帧中戴粉色帽子的男人),而描述不一致。因此,AR-LDM 根据每一个描述生成三个不同的角色。在对 3-5 幅图像进行微调后,自适应 AR-LDM 可以生成一致的角色,并如字幕所描述的那样忠实地合成场景和角色。


更多实验细节请参阅原论文。

相关文章
|
前端开发 API PHP
微信分享自定义图片和摘要
参考:  微信分享实现   微信现在是众多公司营销的重点。遍布朋友圈和消息群组里的html5各位可能也是天天见了,不过自从微信更新了官方api后,对整个微信内的页面管控都严格了不少。而官方的分享卡片,是众多在微信生态中传播的html5静态页面的一个重点。
1777 0
|
10月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
365 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
数据采集 前端开发 API
基于Qwen2大模型实现的中药智能化筛选助手
本文介绍了利用大语言模型微调技术在中药方剂智能化筛选与优化中的应用。项目涵盖微调环境搭建、数据预处理、智能体构建及效果评估等环节,展示了模型在生成新中药方剂上的创新能力和实用性。
基于Qwen2大模型实现的中药智能化筛选助手
|
11月前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
359 37
Python时间序列分析工具Aeon使用指南
|
9月前
|
人工智能 边缘计算 分布式计算
《分布式软总线:AI动态推理架构的智能“建造师”》
分布式软总线是一种具备自组织特性的关键技术,可灵活构建适应人工智能动态推理需求的分布式计算架构。它通过自主设备发现、灵活组网、动态资源调度及自我修复机制,实现高效协同计算。在智能交通、智慧医疗和工业智能制造等领域,分布式软总线优化了实时数据处理与任务分配,推动了AI技术与行业应用的深度融合,为社会发展带来变革性影响。其核心优势在于去中心化设计,能快速响应动态需求并保障系统稳定性,助力复杂推理任务高效完成。
346 2
|
安全 Java 数据库连接
【Java每日一题】——第三十四题:设计一个学生类Student和它的一个子类Undergraduate
【Java每日一题】——第三十四题:设计一个学生类Student和它的一个子类Undergraduate
|
Ubuntu Go Docker
24-Docker-常用命令详解-docker search
24-Docker-常用命令详解-docker search
|
存储 JavaScript 开发者
Vue 组件间通信的最佳实践
本文总结了 Vue.js 中组件间通信的多种方法,包括 props、事件、Vuex 状态管理等,帮助开发者选择最适合项目需求的通信方式,提高开发效率和代码可维护性。
ly~
|
存储 安全 数据库
密码管理器哪个比较好用?
介绍几款常用的密码管理器:Bitwarden功能全面、价格合理,适合个人用户;KeePass高度安全、免费开源,但数据同步不便;LastPass界面友好、跨平台支持好,曾有安全事件;1Password安全性高、用户体验佳,价格偏高;ProtonPass隐私保护强,功能实用,适合Proton生态用户。
ly~
2395 9