AI训练性能提升30%,阿里云发布GPU计算裸金属实例ebmgn7ex

简介: ChatGPT、AIGC(人工智能生成内容)等技术潮流快速兴起,让普通人也感受到了人工智能技术应用落地对用户体验带来的巨大改变。应用的快速落地,离不开背后基础设施的支撑。人工智能模型的训练场景,往往要求高算力、高吞吐、低延时,可以大大加快训练速度,加速模型迭代。

ChatGPT、AIGC(人工智能生成内容)等技术潮流快速兴起,让普通人也感受到了人工智能技术应用落地对用户体验带来的巨大改变。应用的快速落地,离不开背后基础设施的支撑。人工智能模型的训练场景,往往要求高算力、高吞吐、低延时,可以大大加快训练速度,加速模型迭代。


近日,阿里云发布最新一代面向  AI 训练场景的 GPU 计算型裸金属实例规格族 ebmgn7ex,相较于上一代搭载了 A100 GPU 的裸金属计算实例  ebmgn7e,ebmgn7ex 的带宽提升了 150%、延时降低了 50%,整体 AI 训练场景性能提升约 30%,性价比提升约  20%~30%。


该实例主要适用于自动驾驶、AI  图像识别、语音识别、语义识别、自动控制等人工智能场景,面向互联网、技术服务和自动驾驶等高新技术行业,以及高校、实验室等科研院所对 AI  技术领域进行探索;同时,也十分适用于高性能计算场景,如石油、气象、地质、工业仿真、机械、水文等行业与研究中的仿真模拟应用,以及经济金融领域的预测计算等。


据阿里云弹性计算产品专家介绍,ebmgn7ex  实例采用阿里云自研的云基础设施处理器 CIPU,带宽升级至 160G,满足大多数模型的训练要求;同时利用阿里云自研的 eRDMA  大规模加速能力,GPU以RDMA 接入 TCP overlay 网络,以最低 8 微秒延迟支持 GPU Direct(GPU 直通技术),使多机 AI 训练更高效,更具弹性。基于以上能力,用户可以快速灵活地构建多机 GPU 计算集群。


1.jpg


传统 RDMA 网络低延时而难以扩展,大大限制了其使用场景。阿里云自研的 eRDMA 网络,兼具了低延时和支持大规模组网的优势,使得 gn7ex 实例可部署于阿里云所有可用区(Availible Zone,简称 AZ),可在主要地域实现任意数量集群的快速搭建,帮助企业快速部署人工智能模型。


GPU eRDMA实例.jpg

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1月前
|
机器学习/深度学习 存储 人工智能
【科普向】我们所说的AI模型训练到底在训练什么?
人工智能(AI)模型训练类似于厨师通过反复实践来掌握烹饪技巧。它通过大量数据输入,自动优化内部参数(如神经网络中的权重和偏置),以最小化预测误差或损失函数,使模型在面对新数据时更加准确。训练过程包括前向传播、计算损失、反向传播和更新权重等步骤,最终生成权重文件保存模型参数,用于后续的应用和部署。理解生物神经网络的工作原理为人工神经网络的设计提供了灵感,后者广泛应用于图像识别、自然语言处理等领域。
|
3天前
|
人工智能 物联网 开发者
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
Oumi 是一个完全开源的 AI 平台,支持从 1000 万到 4050 亿参数的模型训练,涵盖文本和多模态模型,提供零样板代码开发体验。
115 43
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
|
2天前
|
机器学习/深度学习 人工智能 计算机视觉
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
MILS 是 Meta AI 推出的零样本生成高质量多模态描述方法,支持图像、视频和音频的描述生成,无需额外训练。
61 34
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
|
12天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置,包括CPU+GPU、FPGA等,适用于人工智能、机器学习和深度学习等计算密集型任务。本文整理了阿里云GPU服务器的优惠价格,涵盖NVIDIA A10、V100、T4等型号,提供1个月、1年和1小时的收费明细。具体规格如A10卡GN7i、V100-16G卡GN6v等,适用于不同业务场景,详情见官方页面。
82 11
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与情感计算:AI如何理解人类情感
人工智能与情感计算:AI如何理解人类情感
293 20
|
22天前
|
存储 Serverless 文件存储
AI 场景下,函数计算 GPU 实例模型存储最佳实践
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。
|
24天前
|
人工智能 运维 Serverless
云端问道8期方案教学-基于Serverless计算快速构建AI应用开发
本文介绍了基于Serverless计算快速构建AI应用开发的技术和实践。内容涵盖四个方面:1) Serverless技术价值,包括其发展趋势和优势;2) Serverless函数计算与AI的结合,探讨AIGC应用场景及企业面临的挑战;3) Serverless函数计算AIGC应用方案,提供一键部署、模型托管等功能;4) 业务初期如何低门槛使用,介绍新用户免费额度和优惠活动。通过这些内容,帮助企业和开发者更高效地利用Serverless架构进行AI应用开发。
|
1月前
|
人工智能 物联网
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
74 10
|
2月前
|
人工智能 缓存 并行计算
转载:【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,讲解了CPU算力的计算方法、算力与数据加载之间的平衡,以及如何通过算力敏感度分析优化计算系统性能。同时,文章还考察了服务器、GPU和超级计算机等平台的性能发展,揭示了这些变化如何塑造我们对CPU性能的理解和期待。
转载:【AI系统】CPU 计算本质
|
2月前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
78 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能

相关产品

  • GPU云服务器